DNA Polymerases and DNA Repair in Eukaryotic Cells

  • Alain Sarasin
  • Jean-Michel Rossignol
  • Michel Philippe


When living organisms are exposed to deleterious conditions, such as physical or chemical agents, their cellular DNAs are subject to damage. In order to survive and to maintain genetic continuity, living organisms have developed very efficient repair processes. If a DNA damage is defined as any modification of the normal chemistry or any change in the sequence of the nitrogenous bases of DNA, DNA repair processes are biological mechanisms by which the damage is reversed or removed from the DNA. An error-free repair mode will restore the correct base sequence while an error-prone repair mode will give rise to a base sequence different from the original one.


Excision Repair Repair Pathway Replication Fork Xeroderma Pigmentosum Monkey Kidney Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Hanawalt, E. C. Friedberg and C. F. Fox, eds., DNA Repair Mechanisms, Academic Press, New York (1978).Google Scholar
  2. 2.
    T. Lindhal, Prog. Nucl. Acid Res. Mol. Biol. 22:135–192 (1979).CrossRefGoogle Scholar
  3. 3.
    P. C. Hanawalt, P. K. Cooper, A. K. Ganesan and C. A. Smith, Ann. Rev. Biochem. 48:783–836 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Laval and F. Laval, in:“Molecular and Cellular Aspects of Carcinogen Screening Tests”, R. Montesano, H. Bartsch and L. Tomatis, eds., Lyon IARC Scientific Publications (1980).Google Scholar
  5. 5.
    M. Defais-Villani, P.C. Hanawalt and A. Sarasin, Adv. in Radiat. Biol., in press (1982).Google Scholar
  6. 6.
    J. D. Hall and D. W. Mount, Prog. Nucl. Acid Res. Mol. Biol. 25:53–126 (1981).CrossRefGoogle Scholar
  7. 7.
    J. Cleaver, Nature 218:652–656 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Weissbach, Ann. Rev. Biochem. 46:25–47 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    M. G. Sarngadharan, M. Robert-Guroff and R. C. Gallo, Biochem. Biophys. Acta 516:419–487 (1978).PubMedGoogle Scholar
  10. 10.
    A. Weissbach, Arch. Biochem. Biophys. 198:386–396 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    J. J. Byrnes, K. M. Downey, V. L. Black and A. G. So, Biochemistry 15:2817–2823 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Y. W. Tsang-Lee, C. K. Tan, A. G. So and K. M. Downey, Biochemistry 19:2096–2101 (1980).CrossRefGoogle Scholar
  13. 13.
    G. R. Banks, J. A. Boezi and I. R. Lehman, J. Biol. Chem. 254:9886–9892 (1979).PubMedGoogle Scholar
  14. 14.
    K. Mac Kune and A. M. Holmes, Nucl. Acids. Res. 6:3341–3352 (1979).CrossRefGoogle Scholar
  15. 15.
    M. Mechali, J. Abadiedebat and A. M. de Recondo, J. Biol. Chem. 255:2114–2122 (1980).PubMedGoogle Scholar
  16. 16.
    G. Villani, B. Sauer and I. R. Lehman, J. Biol. Chem. 255:9479–9483 (1980).PubMedGoogle Scholar
  17. 17.
    A. Spanos, S.G. Sedgwick, G.T. Yarranton, U. Hubscher and G. R. Banks, Nucl. Acids Res. 9:1825–1839 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    P. A. Fisher and D. Korn, J. Biol. Chem. 252:6528–6535 (1977).PubMedGoogle Scholar
  19. 19.
    Y. C. Chen, E. Bohn, S. R. Planck and S. H. Wilson, J. Biol. Chem. 254:11678–11687 (1979).PubMedGoogle Scholar
  20. 20.
    U. Hubscher, C. C. Kuenzle and S. Spadari, Proc. Natl. Acad. Sci. U.S.A. 76:2316–2320 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    L. M. S. Chang and F. J. Bollum, J. Biol. Chem. 247:7948–7950 (1972).PubMedGoogle Scholar
  22. 22.
    M. Mechali, M. Girard and A. M. de Recondo, J. Virology 23:117–125 (1977).PubMedGoogle Scholar
  23. 23.
    L. M. S. Chang, J. Biol. Chem. 248:3789–3795 (1973).PubMedGoogle Scholar
  24. 24.
    M. Yamaguchi, K. Tanabe, Y. N. Taguchi, M. Nishizawa, T. Takahashi and A. Matsukage, J. Biol. Chem. 255:9942–9948 (1980).PubMedGoogle Scholar
  25. 25.
    J. Waser, U. Hubscher, C. C. Kuenzle and S. Spadari, Eur. J. Biochem. 97:361–368 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Philippe and P. Chevaillier, Biochem. J. 175:595–600 (1978).PubMedGoogle Scholar
  27. 27.
    M. Yamaguchi, A. Matsukage and T. Takahashi, J. Biol. Chem. 255:7002–7009 (1980).PubMedGoogle Scholar
  28. 28.
    A. I. Scovassi, R. Wicker and U. Bertazzoni, Eur. J. Biochem. 100:491–496 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    W. Zimmerman, S. M. Chen, A. Bolden and A weissbach, J. Biol. Chem. 255:11847–11852 (1980).Google Scholar
  30. 30.
    M. M. Kwant and P. C. van der Vliet, Nucl. Acids Res. 8:3993–4007 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    D. A. Clayton, J. M. Doda and E. C. Friedberg, Proc. Natl. Acad. Sci. U.S.A. 71:2777–2781 (1974).PubMedCrossRefGoogle Scholar
  32. 32.
    W. A. Haseltine, L. K. Gordon, C. P. Lindan, R. H. Grafstrom, N. L. Shaper and L. Grossman, Nature 285:634–641 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    P. C. Seawell, C. A. Smith and A. K. Ganesan, J. Virology 35:790–797 (1980).PubMedGoogle Scholar
  34. 34.
    K. Tanaka, M. Sekiguchi and Y. Okada, Proc. Natl. Acad. Sci. U.S.A. 72:4071–4075 (1975).PubMedCrossRefGoogle Scholar
  35. 35.
    G. Ciarrochi and S. Linn, Proc. Natl. Acad. Sci. U.S.A. 72:1887–1891 (1978).CrossRefGoogle Scholar
  36. 36.
    C. A. Smith and P. C. Hanawalt, Proc. Natl. Acad. Sci. U.S.A. 75:2598–2602 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    G. P. Margison and P. Kleihues, Biochem. J. 148:521–525 (1975).PubMedGoogle Scholar
  38. 38.
    P. Kleihues and J. Bucheler, Nature 269:625–626 (1977).PubMedCrossRefGoogle Scholar
  39. 39.
    J. J. Castellot, M. R. Miller, D. M. Lehtomaki and A. B. Pardee, J. Biol. Chem. 254:6904–6908 (1979).PubMedGoogle Scholar
  40. 40.
    J. M. Rossignol, A. Gentil, J. Lacharpagne and A. M. de Recondo, Biochem. Intern. 1:253–261 (1980).Google Scholar
  41. 41.
    T. S. F. Wang and D. Korn, Biochemistry 19:1782–1790 (1980).PubMedCrossRefGoogle Scholar
  42. 42.
    T. R. Butt, W. M. Wood, E. L. McKay and P. L. R. Adams, Biochem. J. 173:309–314 (1978).PubMedGoogle Scholar
  43. 43.
    P. Moore and B. S. Strauss, Nature 278:664–666 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Sarasin and P. C. Hanawalt, J. Mol. Biol. 138:299–319 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    A. R. Lehmann, J. Mol. Biol. 66:319–337 (1972).PubMedCrossRefGoogle Scholar
  46. 46.
    A. R. Lehmann, S. Kirk-Bell, C. F. Arlett, M. C. Paterson, P. H. Lohman, E. A. de Weerd-Kastelein and D. Bootsma, Proc. Natl. Acad. Sci. U.S.A. 72:219–223 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    Y. Fujiwara and M. Tatsumi, Mutation Res. 37:91–110 (1976).PubMedCrossRefGoogle Scholar
  48. 48.
    H. J. Edenberg, Biophys. J. 16:849–860 (1976).PubMedCrossRefGoogle Scholar
  49. 49.
    R. Meneghini, Biochim. Biophys. Acta. 425:419–427 (1976).PubMedGoogle Scholar
  50. 50.
    W. K. Kauman and J. E. Cleaver, J. Supramol. Struct. Cell Biochem. 5:188 (1981).Google Scholar
  51. 51.
    U. Bertazzoni, M. Stefanini, G. Pedrali-Noy, E. Guilotto, F. Nuzzo, A. Falaschi and S. Spadari, Proc. Natl. Acad. Sci. U.S.A. 73:785–789 (1976).PubMedCrossRefGoogle Scholar
  52. 52.
    R. Wicker, A. I. Scovassi and S. Nocentini, Nucl. Acids Res. 6:1591–1605 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    M. Mezzina and S. Nocentini, Nucl. Acids Res. 5:4317–4328 (1978).PubMedCrossRefGoogle Scholar
  54. 54.
    K. Suzuki, M. Miyaki, N. Akamatsu and T. Ono, FEBS Lett. 119:150–154 (1980).PubMedCrossRefGoogle Scholar
  55. 55.
    G. Ciarocchi, J. G. Jose and S. Linn, Nucl. Acids Res. 7:1205–1219 (1979).CrossRefGoogle Scholar
  56. 56.
    J. A. Huberman, Cell 23:647–648 (1981).PubMedCrossRefGoogle Scholar
  57. 57.
    S. Ikegami, T. Taguchi and M. Ohashi, Nature 275:458–460 (1978).PubMedCrossRefGoogle Scholar
  58. 58.
    G. Pedrali-Noy and S. Spadari, J. Virol. 36:457–464 (1980).PubMedGoogle Scholar
  59. 59.
    A. Sugino and K. Nakayama, Proc. Natl. Acad. Sci. U.S.A. 77:7049–7053 (1980).PubMedCrossRefGoogle Scholar
  60. 60.
    G. Pedrali-Noy and S. Spadari, Mutation Res. 70:389–394 (1980).PubMedCrossRefGoogle Scholar
  61. 61.
    E. Guilotto and C. Mondello, Biochem, Biophys. Res. Commun. 99:1287–1294 (1981).CrossRefGoogle Scholar
  62. 62.
    F. Hanaoka, M. Kato, S. Ikegami, M. Ohashi and M. Yamada, Biochem. Biophys. Res. Commun. 87:575–580 (1979).PubMedCrossRefGoogle Scholar
  63. 63.
    R. D. Snyder and J. D. Regan, Biochem. Biophys, Res. Commun. 99:1088–1094 (1981).CrossRefGoogle Scholar
  64. 64.
    N. A. Berger, K. K. Kurohara, S. J. Petzold and G. W. Sikorski, Biochem. Biophys. Res. Commun. 89:218–225 (1979).PubMedCrossRefGoogle Scholar
  65. 65.
    J. E. Cleaver, Radiat. Res. 37:334–340 (1969).PubMedCrossRefGoogle Scholar
  66. 66.
    N. R. Cozarelli, Ann. Rev. Biochem. 46:641–668 (1977).CrossRefGoogle Scholar
  67. 67.
    A. R. S. Collins, Biochim. Biophys. Acta 478:461–473 (1977).PubMedGoogle Scholar
  68. 68.
    W. Dunn and J. Regan, Molee. Pharmacol. 15:367–374 (1979).Google Scholar
  69. 69.
    J. M. Rossignol, Ph.D. Thesis, University of Paris (1980).Google Scholar
  70. 70.
    M. Radman, in: “Molecular Mechanisms for Repair of DNA,” P. C. Hanawalt and R. B. Setlow, eds., Plenum Press, New York 355–367 (1975).Google Scholar
  71. 71.
    E. M. Witkin, Bacteriol. Rev. 40:869–907 (1976).PubMedGoogle Scholar
  72. 72.
    R. Devoret, A. Goze, Y. Moulé and A. Sarasin, in: “Mécanismes d’altération et de réparatiod du DNA: relations avec la mutagénèse et la cancérogénèse chimique, “Colloques Internationaux du C.N.R.S., R. Daudel, Y. Moulé and F. Zajdela, eds., Paris, 256:283-291 (1977).Google Scholar
  73. 73.
    P. L. Moreau, M. Fanica and R. Devoret, Biochimie 62:687–694 (1980).PubMedCrossRefGoogle Scholar
  74. 74.
    L. E. Bockstahler and C. D. Lytle, Biochem. Biophys Res. Commun. 41:184–189 (1970).PubMedCrossRefGoogle Scholar
  75. 75.
    L. E. Bockstahler and C. D. Lytle, Photochem. Photobiol. 25:477–482 (1977).PubMedCrossRefGoogle Scholar
  76. 76.
    A. Sarasin and P. C. Hanawalt, Proc. Natl. Acad. Sci. U.S.A. 75:346–350 (1978).PubMedCrossRefGoogle Scholar
  77. 77.
    A. Sarasin, Biochimie 60:1141–1144 (1978).PubMedCrossRefGoogle Scholar
  78. 78.
    C. D. Lytle, Natl. Cancer Inst. Monograph. 50:145–149 (1978).Google Scholar
  79. 79.
    W. P. Jeeves and A. J. Rainbow, Mutation Res. 60:33–41 (1979).PubMedCrossRefGoogle Scholar
  80. 80.
    A. Sarasin and A. Benoit, Mutation Res. 70:71–81 (1980).PubMedCrossRefGoogle Scholar
  81. 81.
    C. D. Lytle, J. Copey and W. D. Taylor, Nature 272:60–62 (1978).PubMedCrossRefGoogle Scholar
  82. 82.
    M. Günther, R. Wicker, S. Tiravy and J. Copey, in: “Chromosome Damage and Repair”, E. Seeberg, ed., 605-610 (1981).Google Scholar
  83. 83.
    S. M. D’Ambrosio and R. B. Setlow, Proc. Natl. Acad. Sci. U.S.A. 73:2396–2400 (1976).PubMedCrossRefGoogle Scholar
  84. 84.
    T. Kato and Y. Shinoura, Mol. Gen. Genet. 156:121–131 (1977).PubMedGoogle Scholar
  85. 85.
    U. B. Das Gupta and W. C. Summers, Proc. Natl. Acad. Sci. U.S.A. 75:2378–2381 (1978).CrossRefGoogle Scholar
  86. 86.
    A. Sarasin, C. Gaillard and J. Feunteun, in:“Induced Mutagenesis Molecular mechanisms and their implications for environmental protection”, C. W. Lawrence, ed., Plenum Press, New York, in press (1981).Google Scholar
  87. 87.
    P. Caillet-Fauquet, M. Défais and M. Radman, J. Mol. Biol. 117:95–112 (1977).PubMedCrossRefGoogle Scholar
  88. 88.
    G. Villani, S. Boiteux and M. Radman, Proc. Natl. Acad. Sci. U.S.A. 75:3037–3041 (1978).PubMedCrossRefGoogle Scholar
  89. 89.
    B. Strauss, P. Moore and S. Rabkin, J. Supramol. Struct. Cell. Biochem. 5:191 (1981).Google Scholar
  90. 90.
    S. Yoshida, Biochim. Biophys. Acta 652:324–333 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Alain Sarasin
  • Jean-Michel Rossignol
    • 1
  • Michel Philippe
    • 2
  1. 1.Institut de Recherches Scientifiques sur le CancerVillejuif CedexFrance
  2. 2.Laboratoire de Biologie Cellulaire ERA-CNRSUniversité Paris-Val de MarneCréteil CedexFrance

Personalised recommendations