Mechanisms of DNA Repair as Revealed by Artificial Introduction of Enzymes into Viable Cells

  • Mutsuo Sekiguchi
  • Hiroshi Hayakawa
  • Katsumi Yamashita
  • Kenji Shimizu


Procedures for artificial introduction of active protein molecules into living cell systems have been developed and used to analyze cellular mechanisms for DNA repair. Plasmolyzed cells of Escherichia coli strains carrying a mutation in one of uvrA, uvrB and uvrC genes acquired ultraviolet (UV) resistance when the cells were exposed to high concentrations of T4 endonuclease V. With increasing concentrations of the enzyme, survival of the plasmolyzed cells after UV irradiation increased while colony-forming ability of unirradiated plasmolyzed cells was not significantly affected. The effect of T4 endonuclease V was specific for uvr mutants; wild type strains as well as strains having a mutation in recA or polA gene were not reactivated. On the other hand, E. coli DNA polymerase I was effective for enhancing survival of plasmolyzed cells of polA mutant, pre-exposed to UV. Thus, E. coli DNA polymerase I (molecular weight, 109,000 daltons) can be taken up into permeable cells and function in vivo to replace defective functions of the particular mutants.


Excision Repair Xeroderma Pigmentosum Complementation Group Sendai Virus Artificial Introduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Leive, Proc. Natl. Acad. Sci. USA 53:745–750 (1965).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Buttin and A. Kornberg, J. Biol. Chem. 241:5419–5427 (1966).PubMedGoogle Scholar
  3. 3.
    R. E. Moses and C. C. Richardson, Proc Natl. Acad. Sci. USA 67:674–681 (1970).PubMedCrossRefGoogle Scholar
  4. 4.
    H-P. Vosberg and H. Hoffmann-Berling, J. Mol. Biol. 58:739–753 (1971).PubMedCrossRefGoogle Scholar
  5. 5.
    R. B. Wickner and J. Hurwitz, Biochem. Biophys. Res. Commun. 47:202–211 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    R. E. Moses, J. Biol. Chem. 247:6031–6038 (1972).PubMedGoogle Scholar
  7. 7.
    K. Shimizu and M. Sekiguchi, Molec. Gen. Genet. 168:37–47 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Papahadjopoulos, G. Poste and E. Mayhew, Biochim. Biophys. Acta 363:404–418 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Furusawa, T. Nishimura, M. Yamaizumi and Y. Okada, Nature 249:449–450 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Loyter, N. Zakai and R. G. Kulka, J. Cell Biol. 66:292–304 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Tanaka, M. Sekiguchi and Y. Okada, Proc. Natl. Acad, Sci. USA 72:4071–4075 (1975).CrossRefGoogle Scholar
  12. 12.
    K. Tanaka, H. Hayakawa, M. Sekiguchi and Y. Okada, Proc. Natl. Acad. Sci. USA 74:2958–2962 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Hayakawa, K. Ishizaki, M. Inoue, T. Yagi, M. Sekiguchi and H. Takebe, Mutation Res. 80:381–388 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    R. B. Setlow and W. L. Carrier, Proc. Natl. Acad. Sci. USA 51:226–231 (1964).PubMedCrossRefGoogle Scholar
  15. 15.
    R.P. Boyce and P. Howard-Franders, Proc. Natl. Acad. Sci. USA 51:293–300 (1964).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Yasuda and M. Sekiguchi, Proc. Natl. Acad. Sci. USA 67:1839–1845 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    E. C. Friedberg and J. J. King, J. Bacteriol. 106:500–507 (1971).PubMedGoogle Scholar
  18. 18.
    K. Schimizi and M. Sekiguchi, J. Biol. Chem. 251:2613–2619 (1976).Google Scholar
  19. 19.
    M. Goulian, Z. J. Lucas and A. Kornberg, J. Biol. Chem. 243:627–638 (1968).PubMedGoogle Scholar
  20. 20.
    B. Weiss and C. C. Richardson, Proc. Natl. Acad. Sci. USA 57:1021–1028 (1967).PubMedCrossRefGoogle Scholar
  21. 21.
    W. Harm, Virology 19:66–71 (1963).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Sato and M. Sekiguchi, J. Mol. Biol. 102:15–26 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Howard-Flanders, R. P. Boyce and L. Theriot, Genetics 53:1119–1136 (1966).PubMedGoogle Scholar
  24. 24.
    E. Seeberg, Proc. Natl. Acad. Sci. USA 75:2569–2573 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Kato and Y. Shinoura, Molec. Gen. Genet. 156:121–131 (1977).PubMedGoogle Scholar
  26. 26.
    D. W. Mount, Proc. Natl. Acad. Sci. USA 74:300–304 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    E. M. Witkin, Bacteriol. Rev. 40:869–907 (1976).PubMedGoogle Scholar
  28. 28.
    J. E. Cleaver, Nature 218:652–656 (1968).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Okada and J. Tadokoro, Exp. Cell Res. 26:108–118 (1962).PubMedCrossRefGoogle Scholar
  30. 30.
    E. A. deWeerd-Kastelein, W. Keijzer and D. Bootsma, Nature New Biol. 238:80–83 (1972).PubMedGoogle Scholar
  31. 31.
    K. H. Kraemer, H. G. Coon, R. A. Petinga, S. F. Barrett, A. E. Rahe and J. H. Robbins, Proc. Natl. Acad. Sci. USA 72:59–63 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    S. Arase, T. Kozuka, K. Tanaka, M. Ikenaga and H. Takebe, Mutation Res. 59:143–146 (1979).PubMedCrossRefGoogle Scholar
  33. 33.
    W. Keijzer, N. G. J. Jaspers, P. J. Abrahams, A. M. R. Taylor, C. F. Arlett, B. Zelle, H. Takebe, P. D. S. Kinmont and D. Bootsma, Mutation Res. 62:183–190 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    L. Grossman, S. Riazzudin, W. A. Haseltine and C. P. Lindan, Cold Spring Harb. Symp. Quant. Biol. 43:947–955 (1978).CrossRefGoogle Scholar
  35. 35.
    W. A. Haseltine, L. k. gordon, C. P. Lindan, R. H. Grafstrom, N. L. Shaper and L. Grossman, Nature 285:634–641 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    E. H. Radany, and E. C. Friedberg, Nature 286:182–185 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    H. R. Warner, B. F. Demple, W. A. Deutch, C. M. Kane and S. Linn, Proc. Natl. Acad. Sci. USA 77:4602–4606 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    B. Demple and S. Linn, Nature 287:303–208 (1980).CrossRefGoogle Scholar
  39. 39.
    P. C. Seawell, C. A. Smith and A. K. Ganesan, J. Virology 35:790–797 (1980).PubMedGoogle Scholar
  40. 40.
    L. K. Gordon and W. A. Haseltine, J. Biol. Chem. 255:12047–12050 (1980).PubMedGoogle Scholar
  41. 41.
    Y. Nakabeppu and M. Sekiguchi, Proc. Natl. Acad. Sci. USA 78 (in press).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Mutsuo Sekiguchi
    • 1
  • Hiroshi Hayakawa
    • 1
  • Katsumi Yamashita
    • 1
  • Kenji Shimizu
    • 1
  1. 1.Department of Biology, Faculty of ScienceKyushu University 33Fukuoka 812Japan

Personalised recommendations