Fibronectin Binds to Charge-Modified Proteins

  • Matti Vuento
  • Mirja Korkolainen
  • Ulf-Håkan Stenman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 155)


Binding of fibronectin to a variety of macromolecular ligands has been demonstrated in vitro. These include proteins such as collagen, fibrin, actin, Clq and fibronectin itself, but also glycosaminoglycans, DNA and polyamines. Furthermore, fibronectin interacts with the surface of animal cells and bacteria (reviewed in Ref. 1). Some of these interactions contribute to the organization of extracellular matrixes in cell cultures and in connective tissue. The binding of fibronectin to bacteria, collagen, fibrin and actin probably are important for the role of circulatory fibronectin as an opsonin. In many cases, fibronectin appears to bind denatured or modified ligands more readily than native ones. Thus binding of fibronectin to collagen (2) and actin (3) is enhanced by denaturation of these proteins. Fibronectin binds more efficiently to fibrin than to its parent molecular form fibrinogen (4). Conformational factors may also play a role in the binding of fibronectin to Clq (5). We have tested the effect of chemical modification on the interaction of fibronectin with several serum proteins. Modification of carboxyl groups of lysozyme, albumin and IgG caused these proteins to avidly bind to fibronectin. This modification also enhanced the self-association of fibronectin.


Conformational Factor Succinic Anhydride Cyanogen Bromide Glycine Ethyl Physiological Ionic Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaheri, A., Keski-Oja, K., Vartio, T., Alitalo, K., Hedman, K., and Kurkinen, M., in “Gene Families of Collagen and Other Proteins” (Prockop and Champe, eds.), PP. 161–178, Elsevier, Amsterdam, 1980.Google Scholar
  2. 2.
    Engvall, E., Ruoslahti, E., and Miller, E. J., J. Exp. Med. 147:1584, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Koteliansky, V. E., Glukhova, M. A., Morozkin, A. D., Musatov, A. P., Shirinsky, V. P., Tskhovrebova, L. A., and Smirnov, V. N., FEBS Lett. 133:31, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Stemberger, A., and Hörmann, H., Hoppe-Seyler’s Z. Physiol. Chem. 357, 1003, 1976.PubMedGoogle Scholar
  5. 5.
    Menzel, E. J., Smolen, J. S., Liotta, L., and Reid, K. B., FEBS Lett. 129:188, 1981.PubMedCrossRefGoogle Scholar
  6. 6.
    Vuento, M., and Vaheri, A., Biochem. J. 183:331, 1979.PubMedGoogle Scholar
  7. 7.
    Marchalonis, J. J., Biochem. J. 113:299, 1969.PubMedGoogle Scholar
  8. 8.
    Carraway, K. L., and Koshland, D. E. Jr., Methods in Enzymology 25:616, 1972.CrossRefGoogle Scholar
  9. 9.
    Klotz, I. M., Methods in Enzymology 11:576, 1967.CrossRefGoogle Scholar
  10. 10.
    Vuento, M., Salonen, E., Salminen, K., Pasanen, M., and Stenman, U.-H., Biochem. J. 191:719, 1980.PubMedGoogle Scholar
  11. 11.
    Vuento, M., Korkolainen, M., and Stenman, U.-H., submitted for publication.Google Scholar
  12. 12.
    Weber, K., and Osborn, M., J. Biol. Chem. 244:4406, 1969.PubMedGoogle Scholar
  13. 13.
    Vuento, M., Vartio, T., Saraste, M., von Bonsdorff, C.-H., and Vaheri, A., Eur. J. Biochem. 105:33, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Vuento, M., Wrann, M., and Ruoslahti, E., FEBS Lett. 82:227, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Matti Vuento
    • 1
  • Mirja Korkolainen
    • 1
  • Ulf-Håkan Stenman
    • 2
  1. 1.Department of BiochemistryUniversity of HelsinkiHelsinki 17Finland
  2. 2.Department of Obstetrics and GynaecologyUniversity Central HospitalHelsinkiFinland

Personalised recommendations