Regulation of Macrophage Functions by Interferon

  • Diana Boraschi
  • Elena Pasqualetto
  • Pietro Ghezzi
  • Mario Salmona
  • John E. Niederhuber
  • Aldo Tagliabue
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 155)


Mononuclear phagocytes exert a major regulatory influence on many lymphocyte functions, including antibody production, lymphocyte proliferation, and the production of lymphokines (reviewed in Reference 1). Highly suppressive macrophages can be induced in mice by injection of a variety of agents such as C. parvum, BCG and pyran copolymer. Such in vivo stimulation concomitantly enhances macrophage tumoricidal activity in vitro and this observation led to the belief that a common activation mechanism underlay both functions (2–3). Unstimulated peritoneal macrophages also express suppressor activity (2,4) and low but significant levels of tumoricidal activity (5). This “natural” cytotoxicity can be highly enhanced by in vitro expo-sure to lymphokines, interferons, bacterial endotoxins and other substances (6–8). in vitro modulation of macrophage suppression with the same agents that enhance tumoricidal activity would help verify the hypothesis of a common regulation for the two activities. We now summarize our recent observations on the possibility of distinguishing the mechanism of regulation of macrophage cytotoxicity from that controlling suppression.


Suppressor Activity Macrophage Function Tumoricidal Activity Opsonized Zymosan Fibroblast Interferon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson, D. S., in “Imnunobiology of the Macrophage” (D. S. Nelson, ed.), pp. 235–257, Academic Press, New York, 1976.Google Scholar
  2. 2.
    Baird, L. G., and Kaplan, A. M., Cell. Immunol. 28:22, 1978.CrossRefGoogle Scholar
  3. 3.
    Kaplan, A. M., Morahan, P. S., and Regelson, W., J. Natl. Cancer Inst. 52:1919, 1974.PubMedGoogle Scholar
  4. 4.
    Boraschi, D., Soldateschi, D., and Tagliabue, A., Eur. J. Immunol. 12:320, 1982.PubMedCrossRefGoogle Scholar
  5. 5.
    Tagliabue, A., Mantovani, A., Kilgallen, M., Herberman, R. B., and McCoy, J. L., J. Immunol. 122:2363, 1979.PubMedGoogle Scholar
  6. 6.
    Evans, R., and Alexander, P., Transplantation 12:227, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Boraschi, D., and Tagliabue, A., Eur. J. Immunol. 11:110, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Doe, W. F., and Henson, P. M., J. Exp. Med. 148:544, 1978.PubMedCrossRefGoogle Scholar
  9. 9.
    Boraschi, D., Ghezzi, P., Salmona, M., and Tagliabue, A., Immunology 45:621, 1982.PubMedGoogle Scholar
  10. 10.
    Niederhuber, J. E., Immunol. Rev. 40:28, 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Boraschi, D., Pasqualetto, E., Ghezzi, P., Salmona, M., Rotilio, D., Donati, M. B., and Tagliabue, A., in “Natural Cell-mediated Immunity” (R. B. Herberman, ed.), Academic Press, New York, in press.Google Scholar
  12. 12.
    Metzger, Z., Hoffeld, J. T., and Oppenheim, J. J., J. Immunol. 124:983, 1980.PubMedGoogle Scholar
  13. 13.
    Nathan, C. F., Silverstein, S. C., Brukner, L. H., and Cohn, Z.A., J. Exp. Med. 149:100, 1979.PubMedCrossRefGoogle Scholar
  14. 14.
    Nathan, C. F., and Root, R. K., J. Exp. Med. 146:1648, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Diana Boraschi
    • 1
  • Elena Pasqualetto
    • 2
  • Pietro Ghezzi
    • 2
  • Mario Salmona
    • 2
  • John E. Niederhuber
    • 3
  • Aldo Tagliabue
    • 1
  1. 1.Sclavo Research CenterSienaItaly
  2. 2.IRFMNMilanItaly
  3. 3.University of Michigan SchoolAnn ArborUSA

Personalised recommendations