Distinction of Macrophage Subpopulations: Measurement of Functional Cell Parameters by Flow Cytometry

  • Alexander Raffael
  • Günter Valet
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 155)


Macrophages represent a functionally heterogeneous group of cells which belong to the mononuclear phagocyte system (1). Heterogeneity may exist between macrophages from different organs as well as among macrophages within one organ (2,3). Heterogeneity has been defined by differences of Ia-antigen expression (4,3); monoclonal antibodies (5,6) against cell surface determinants; receptors for the C3 complement component or the Fc part of IgG molecules; cell size (7,3); enzyme activities e.g. phosphatase, nucleotidase (8) peroxidase (9) and transglutaminase (10); wheat germ lectin binding (11); tumor cytoxicity (12); or phagocytosis (13) and adherence. Classification according to several parameters is necessary to identify small subpopulations of macrophages (1). Flow cytometry is a particularly useful method for this purpose, especially because functional parameters of living cells can be measured simultaneously at the single cell level in a fast and accurate way. Such parameters include cytoplasmic (14,15) or lysosomal (16) enzyme activities, transmembrane potential (17,18), intracellular pH (19) and phagocytosis. The use of vital stains also permits cell sorting. Sorted cells can be recultivated and further analyzed. Macrophages are often characterized as cells with high esterase activity (20,21,22), although there are some reports on low esterase activity in macrophages (23,24,25). It was the purpose of this study to characterize the low activity macrophages in more detail.


Esterase Activity Mononuclear Phagocyte System Macrophage Subpopulation Cell Surface Determinant Vital Stain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Furth, R., in “Mononuclear Phagocytes. Functional Aspects” (R. van Furth, ed.), pp. 1–30, Martinus Nijhoff Publishers, The Hague, 1980.Google Scholar
  2. 2.
    Hopper, K. E., Wood, P. R., and Nelson, D. S., Vox Sang. 36:257, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, K.-C., Molec. Cell. Biochem. 30:39, 1980.PubMedCrossRefGoogle Scholar
  4. 4.
    Cowing, C., Schwartz, B. D., and Dickler, H. B., J. Immunol. 120:378, 1978.PubMedGoogle Scholar
  5. 5.
    Springer, T. A., in “Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses” (R. H. Kennett, Th. J. McKearn and K. B. Bechtol, ed.), pp. 185–217, Plenum Press, New York, 1980.Google Scholar
  6. 6.
    Sun, D., and Lohmann-Matthes, M.-L., Eur. J. Immunol, 1982, in press.Google Scholar
  7. 7.
    Kwan, D., Epstein, M. B., and Norman, A., J. Histochem. Cytochem. 24:355, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Suga, M., Dannenberg, A. M. Jr., and Higuchi, S., Am. J. Pathol. 99:305, 1980.PubMedGoogle Scholar
  9. 9.
    Daems, W. Th., and van der Rhee, H. J., in “Mononuclear Phagocytes. Functional Aspects” (R. van Furth, ed.), pp. 43–60, Martinus Nijhoff Publishers, The Hague, 1980.Google Scholar
  10. 10.
    Schroff, G., Neumann, Ch., and Sorg, C., Eur. J. Immunol. 11:637, 1981.PubMedCrossRefGoogle Scholar
  11. 11.
    Water, R. de, Noordende, J. M. van’t, Ginsel, L. A., and Daems, W. Th., Histochem. 72:333, 1981.CrossRefGoogle Scholar
  12. 12.
    Hopper, K. E., Harrison, J., and Nelson, D. S., J. Reticuloendothelial Soc. 26:259, 1979.Google Scholar
  13. 13.
    Roubin, R., Kennard, J., Foley, D., and Zolla-Pazner, S., J. Reticuloendothelial Soc. 29:423, 1981.Google Scholar
  14. 14.
    Malin-Berdel, J., and Valet, G., Cytometry 1:222, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Rotman, B., and Papermaster, B. W., Proc. Natl. Acad. Sci. USA 55:134, 1966.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsou, K. C., Yip, K. F., and Miller, E. E., J. Histochem. Cytochem. 28:1032, 1980.PubMedCrossRefGoogle Scholar
  17. 17.
    Shapiro, H. M., Natale, P. J., and Kamentsky, L. A., Proc. Natl. Acad. Sci. USA 76:5728, 1979.PubMedCrossRefGoogle Scholar
  18. 18.
    Valet, G., Jenssen, H.-L., Krefft, M., and Ruhenstroth-Bauer, G., Blut. 42:379, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Valet, G., Raffael, A., Moroder, L., Wünsch, E., and Ruhenstroth-Bauer, G., Naturwiss. 68:265, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Yam, L. T., Li, C. Y., and Crosby, W. H., Am. J. Clin. Pathol. 55:283, 1971.PubMedGoogle Scholar
  21. 21.
    van Furth, R., Raeburn, J. A., and van Zwet, Th. L., Blood 54:485, 1979.PubMedGoogle Scholar
  22. 22.
    Bozdech, M. J., and Bainton, D. F., J. Exp. Med. 153:182, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaplow, L. S., and Lerner, E., J. Histochem. Cytochem. 25:590, 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    van Furth, R., Diesselhoff-den Dulk, M. M. C., Raeburn, J. A., van Zwet, Th. L., Crofton, R., and Blussé van Oud Alblas, A., in “Mononuclear Phagocytes. Functional Aspects” (R. van Furth, ed.), pp. 280–298, Martinus Nijhoff Publishers, The Hague, 1980.Google Scholar
  25. 25.
    Raffael, A., and Valet, G., Immunobiol. 160:88, 1981.Google Scholar
  26. 26.
    Fischer, R., and Schmalzl, F., Klin. Wochenschr. 42:751, 1964.PubMedCrossRefGoogle Scholar
  27. 27.
    Kachel, V., Glassner, E., Kordwig, E., and Ruhenstroth-Bauer, G., J. Histochem. Cytochem. 25:804, 1977.PubMedCrossRefGoogle Scholar
  28. 28.
    Benker, G., Kachel, V., and Velet, G., in “Flow Cytometry IV” (O. D. Laerum, T. Lindmo, E. Thorud, eds.), pp. 116–119, Universitetsforlaget, Oslo, 1980.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alexander Raffael
    • 1
  • Günter Valet
    • 1
  1. 1.Arbeitsgruppe KrebszellforschungMax-Planck-Institut fuer BiochemieMartinsriedGermany

Personalised recommendations