Advertisement

Cytoskeleton-Membrane Interaction and the Remodeling of the Cell Surface During Phagocytosis and Chemotaxis

  • J. M. Oliver
  • R. D. Berlin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 155)

Abstract

Chemotaxis and phagocytosis are membrane processes. They begin with the interaction of particles or chemoattractants with cell surface receptors. Their earliest manifestations include changes in ion fluxes (1), the activation of membrane oxidases (2) and the physical reorganization of the membrane and underlying cytoskeleton to form new structures: pseudopods during phagocytosis, uropods and lamellipodia during chemotaxis (3). In this paper we review evidence for a remarkable topographical reorganization of membrane structural determinants and of surface functions during chemotaxis and phagocytosis. It will be shown that membrane receptors may segregate to specific regions of the surface. After ligand binding to these receptors, the resulting complexes may be translocated to other specific regions. Functions such as endocytosis and membrane transport are also restricted to specified areas of the surface. The mechanisms that initiate and sustain these topographical asymmetries will be explored. Recognition of these membrane events may clarify several characteristic properties of polymorphonuclear leukocytes (PMN) and macrophages, for example their ability to maintain unidirectional movements in very shallow chemotactic gradients or to preserve the integrity of membrane transport systems during the removal of cell surface by phagocytosis.

Keywords

Membrane Indentation Locomote Cell Membrane Transport System Oriented Cell Membrane Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., J. Cell Biol. 73:428, 1972.CrossRefGoogle Scholar
  2. 2.
    Becker, E. L., Sigman, M., and Oliver, J. M., Am. J. Pathol. 95:81, 1979.PubMedGoogle Scholar
  3. 3.
    Bessis, M., and DeBoisfleury, A., Blood Cells 2:365, 1976.Google Scholar
  4. 4.
    Oliver, J. M., and Berlin, R. D., Symp. Soc. Exp. Biol. 33:227, 1979.Google Scholar
  5. 5.
    Tsan, M. F., and Berlin, R. D., J. Exp. Med. 134:1016, 1971.PubMedCrossRefGoogle Scholar
  6. 6.
    Oliver, J. M., Ukena, T. E., and Berlin, R. D., Proc. Natl. Acad. Sci. USA 71:394, 1974.PubMedCrossRefGoogle Scholar
  7. 7.
    Berlin, R. D., and Oliver, J. M., J. Cell Biol. 77:789, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    Michl, J., Pieczonka, M. M., Unkeless, J. C., and Silverstein, S. C., J. Exp. Med. 150:607, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Aggeler, J., Heuser, J. R., and Werb, Z., J. Cell Biol, 91:2649, 1981.Google Scholar
  10. 10.
    Wilkinson, P. C., Michl, J., and Silverstein, S. C., Cell Biol. Int. Rep. 4:736, 1980.CrossRefGoogle Scholar
  11. 11.
    Walter, R. J., Berlin, R. D., and Oliver, J. M., Nature 286:724, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Davis, B. H., Walter, R. J., Pearson, C. B., Becker, E. L., and Oliver, J., M., submitted for publication.Google Scholar
  13. 13.
    Oliver, J. M., Krawiec, J. A., and Becker, E. L., J. Reticuloendothelial Soc. 24:697, 1978.Google Scholar
  14. 14.
    Oliver, J. M., and Berlin, R. D., Int. Rev. Cytol. 74:55, 1982.PubMedCrossRefGoogle Scholar
  15. 15.
    Koppel, D. E., Oliver, J. M., and Berlin, R. D., J. Cell Biol., in press, 1982.Google Scholar
  16. 16.
    Cherry, R. J., Biochim. Biophy. Acta 559:289, 1979.Google Scholar
  17. 17.
    Berlin, R. D., and Oliver, J. M., J. Theor. Biol. in press.Google Scholar
  18. 18.
    Schreiner, G. F., and Unanue, E. R., Adv. Immunol. 24:38, 1976.Google Scholar
  19. 19.
    Edelman, G. M., Science 192:218, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    DePetris, S., in “Dynamic Aspects of Cell Surface Organization” (G. Poste and G. L. Nicolson, eds.), p. 644, Elsevier, Amsterdam, 1977.Google Scholar
  21. 21.
    Bretscher, M. S., Nature 260:21, 1976.PubMedCrossRefGoogle Scholar
  22. 22.
    Harris, A. K., Nature 263:781, 1976.PubMedCrossRefGoogle Scholar
  23. 23.
    Hewitt, J. A., J. Theor. Biol. 80:115, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Ramsey, W. S., Exp. Cell Res. 72:489, 1972.PubMedCrossRefGoogle Scholar
  25. 25.
    Senda, N., Tamura, H., Shibata, N., Yoshitake, J., Kendo, K., and Tanaka, K., Exp. Cell Res. 91:393, 1975.PubMedCrossRefGoogle Scholar
  26. 26.
    Senda, N., Shibata, N., Tamora, H., and Yoshitake, J., Meth. Achiev. Exp. Pathol. 9:169, 1979.Google Scholar
  27. 27.
    Englander, L. L., J. Cell Biol. 87:89a, 1980.Google Scholar
  28. 28.
    Keller, H. U., and Cottier, H., Cell Biol. Int. Rep. 5:3, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. M. Oliver
    • 1
  • R. D. Berlin
    • 1
  1. 1.Departments of Physiology and PathologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations