Pulmonary Pharmacology of the SRS-A Leukotrienes

  • J. M. Drazen
  • R. A. Lewis
  • K. F. Austen
  • E. J. Corey
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 54)


Although airway constriction is a prominent feature of many allergic syndromes, the exact cause of this constriction is still unclear. For many years, histamine was thought to play a major role as a mediator of this constriction, but the demonstration by Brocklehurst [1] that classic (H1) antihistamines did not prevent antigen-induced airway constriction in guinea pig lungs suggested the availability, in hypersensitivity responses, of other substances with bronchoconstrictor potential. Specifically, Brocklehurst identified a slow-reacting substance (that is a compound with a slow onset and prolonged duration of action in isolated contractile tissue assays)[2] produced during anaphylaxis which had potent contractile activity on isolated human bronchial tissues. He referred to this material as slow-reacting substance of anaphylaxis or SRS-A to distinguish it from other slow-reacting substances. Brocklehurst not only demonstrated that SRS-A had a unique profile of contractile activity on various tissue assays, he also developed what still is the standard bioassay for SRS-A, a characteristic slow-onset and prolonged response of the atropine and antihistamine treated guinea pig ileum. Brocklehurst defined one unit of SRS-A as the amount of material which would mediate a contractile response in this assay system equal in magnitude to that produced by 5 ng of histamine


Contractile Activity Peripheral Airway Tile Activity Eicosatetraenoic Acid Airway Constriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Brocklehurst, The release of histamine and formation of a slow reacting substance (SRS-A) during anaphylactic shock, J. Physiol. (London), 151: 416–435 (1960).Google Scholar
  2. 2.
    C. H. Kelleway and E. R. Trethewie, The liberation of a slow-reacting smooth-muscle-stimulating substance in anaphylaxis, Q. J. Exp. Physiol., 30: 121–145 (1940).Google Scholar
  3. 3.
    R. P. Orange and K. F. Austen, Slow reacting substance of anaphylaxis, Adv. Immunol., 10: 105–144 (1969).Google Scholar
  4. 4.
    K. Strandberg and P. Hedqvist, Airway effects of slow-reacting substance, prostaglandin F2 and histamine in the guinea pig, Acta Physiol. Scand., 94: 105–111 (1975).Google Scholar
  5. 5.
    R. P. Orange, R. C. Murphy, M. L. Karnovsky, and K. F. Austen, The physicochemical characteristics and purification of slow-reacting substance of anaphylaxis, J. Immunol., 110: 760–770 (1973).PubMedGoogle Scholar
  6. 6.
    M. A. Amdur and J. Mead, Mechanics of respiration in unanesthetized guinea pigs, Am. J. Physiol., 192: 354–368 (1958).Google Scholar
  7. 7.
    J. M. Drazen, Physiologic basis and interpretation of common indices of respiratory mechanical function, Environ. Health Perspect., 16: 11–16 (1976).CrossRefGoogle Scholar
  8. 8.
    J. M. Drazen and K. F. Austen, Effects of intravenous administration of slow-reacting substance of anaphylaxis, histamine, bradykinin and prostaglandin F2 on pulmonary mechanics in the guinea pig, J. Clin. Invest., 53: 1679–1685 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    M. C. Michoud, P. D. Pare, R. P. Orange, and J. C. Hogg, Airway sensitivity to slow-reacting substance of anaphylaxis, histamine, and antigen in Ascaris sensitive monkeys, Am. Rev. Respir. Dis., 119: 419–424 (1979).PubMedGoogle Scholar
  10. 10.
    R. P. Orange, R. C. Murphy, and K. F. Austen, Inactivation of slow reacting substance of anaphylaxis (SRS-A) by arylsulfatases, J. Immunol., 113: 316–321 (1974).PubMedGoogle Scholar
  11. 11.
    M. K. Bach, J. R. Brashler, and R. G. Gorman, On the structure of slow-reacting substance of anaphylaxis: evidence of biosynthesis from arachidonic acid, Prostaglandins, 14: 21–38 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    B. A. Jakschik, S. Falkenhein, and C. W. Parker, Precursor role of arachidonic acid in release of slow reacting substance from rat basophilic leukemia cells, Proc. Natl. Acad. Sci. (USA), 74: 4577–4581 (1977).CrossRefGoogle Scholar
  13. 13.
    J. M. Drazen, R. A. Lewis, S. I. Wasserman, R. P. Orange, and K. F. Austen, Differential effects of a partially purified preparation of slow-reacting substance of anaphylaxis (SRS-A) on guinea pig tracheal spirals and parenchymal strips, J. Clin. Invest., 63: 1–5 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    J. M. Drazen and M. W. Schneider, Comparative responses of tracheal spirals and parenchymal strips to histamine and carbachol in vitro, J. Clin. Invest., 61: 1441–1447 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    R. A. Coleman, I. Kennedy, and C. J. Whelan, The contractile action of slow-reacting substance of anaphylaxis (SRS-A) on guineas-pig isolated lung strip, Br. J. Pharmacol., 68: 838 (1980).Google Scholar
  16. 16.
    A. M. Ghelceni, M. C. Holroyde, and P. Sheard, Response of human isolated bronchial and lung parenchymal strips to SRS-A and other mediators of asthmatic bronchospasm, Br. J. Pharmacol., 71: 107–112 (1980).Google Scholar
  17. 17.
    R. C. Murphy, S. Hammarstrom, and B. Samuelsson, Leukotriene C: a slow reacting substance from murine mastocytoma cells, Proc. Natl. Acad. Sci. (USA), 76: 4275–4279 (1979).CrossRefGoogle Scholar
  18. 18.
    E. J. Corey, D. A. Clark, G. Goto, A. Marfat, C. Mioskowski, B. Samuelsson, and S. Hammarstrom, Stereospecific total synthesis of a “slow-reacting substance of anaphylaxis” (SRS-A), leukotriene C-1, J. Am. Chem. Soc., 102: 1436–1439 (1980).CrossRefGoogle Scholar
  19. 19.
    R. A. Lewis, K. F. Austen, J. M. Drazen, D. A. Clark, A. Marfat, and E. J. Corey, Slow-reacting substance of anaphylaxis: identification of leukotrienes C-1 and D from human and rat sources, Proc. Natl. Acad. Sci. (USA), 77: 3710–3714 (1980a).CrossRefGoogle Scholar
  20. 20.
    R. A. Lewis, J. M. Drazen, K. F. Austen, D. A. Clark, and E. J. Corey, Identification of the C(6)-S-conjugate of leukotriene with cysteine as a naturally occurring slow-reacting substance of anaphylaxis (SRS-A): importance of the 11-cis-geometry for biological activity, Biochem. Biophys. Res. Commun., 96: 271–277 (1980b).PubMedCrossRefGoogle Scholar
  21. 21.
    L. Orning, S. Hammarstrom, and B. Samuelsson, Leukotriene D: a slow reacting substance from rat basophilic leukemia cells, Proc. Natl. Acad. Sci. (USA), 77: 2014–2107 (1980).CrossRefGoogle Scholar
  22. 22.
    C. W. Parker, S. F. Falkenheim, and M. M. Huber, Sequential conversion of the glutathionyl side chain of slow reacting substance (SRS) to cysteinyl-glycine and cysteinyl-glycine and cysteine in rat basophilic leukemia cells stimulated with A23187, Prostaglandins, 20: 863–886 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    J. M. Drazen, K. F. Austen, R. A. Lewis, D. A. Clark, G. Goto, A. Marfat, and E. J. Corey, Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro (guinea pig/pulmonary mechanics/parenchymal strips/tracheal spirals/ slow reacting substance of anaphylaxis), P. Natl. Acad. Sci. (USA), 77: 4354–4358 (1980).CrossRefGoogle Scholar
  24. 24.
    P. Hedqvist, S. Dahlen, L. Gustafsson, S. Hammarstrom, and B. Samuelsson, Biological profile of leukotrienes C4 and D4, Acta. Physiol. Scand., 110: 331–333 (1980).CrossRefGoogle Scholar
  25. 25.
    C. J. Hanna, M. K. Bach, P. D. Pare, and R. R. Schellenberg, Slow-reacting substances (leukotrienes) contract human airway and pulmonary vascular smooth muscle in vitro, Nature, 290: 343–344 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    J. M. Drazen and K. F. Austen, Pulmonary response to antigen infusion in the sensitized guinea pig: Modification by atropine, J. Appl. Physiol., 39: 916–919 (1975).PubMedGoogle Scholar
  27. 27.
    J. M. Drazen, C. S. Venugopalan, K. F. Austen, F. Brion, and E. J. Corey, Effects of leukotriene E on pulmonary mechanics in the guinea pig, Am. Rev. Respir. Dis. (1981).Google Scholar
  28. 28.
    M. C. Holroyde, R. E. C. Altounyan, M. Cole, M. Dixon, and E. V. Elliott, Bronchoconstriction produced in man by leukotrienes C and D, Lancet, 17–18 (1981).Google Scholar
  29. 29.
    R. D. Krell, M. O’Donnell, R. Osborn, L. Vickery, M. Grous, C. Kinzig, D. Bryan, and J. Gleason, Contraction of isolated airway smooth muscle by leukotriene C4 (C) and its antagonism by FPL55712 (F), Fed. Proc., 40: 681 (1981) (Abstract).Google Scholar
  30. 30.
    R. A. Lewis, J. M. Drazen, K. F. Austen, M. Toda, F. Brion, A. Marfat, and E. J. Corey, Contractile activities of structural analogs of leukotrienes C and D: role of the polar substituents, Proc. Natl. Acad. Sci. (USA) (1981).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. M. Drazen
    • 1
  • R. A. Lewis
    • 2
  • K. F. Austen
    • 3
  • E. J. Corey
    • 4
  1. 1.Department of PhysiologyHarvard School of Public HealthBostonUSA
  2. 2.Department of MedicineHarvard Medical School and Brigham and Women’s HospitalBostonUSA
  3. 3.Department of Rheumatology and ImmunologyBrigham and Women’s HospitalBostonUSA
  4. 4.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations