Biosynthesis and Metabolism of Leukotrienes

  • Pär Westlund
  • Elisabeth Granström
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 54)


Leukotriene biosynthesis has until today been detected in several biological systems (Table I) using different kinds of stimuli: ionophore A23187, the bacterial peptide f-Met-Leu-Phe (fMLP), antigen-antibody interactions, phagocytic stimuli, and, not to forget, the classical experiment where release of leukotrienes (SRSs) was achieved by injection of cobra venom into guinea pig and cat lungs (1); the active constituent of the venom was later shown to be phospholipase A2 (2). The action of phospholipase A2 on membrane phospholipids containing arachidonic acid is the key to leukotriene biosynthesis as well as to prostaglandin and thromboxane biosynthesis (see H. van den Bosch, this volume). The stimuli mentioned above all in some way act by stimulation of phospholipase A2


Arachidonic Acid Polymorphonuclear Leukocyte Human Polymorphonuclear Leukocyte Cobra Venom Eicosatetraenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feldberg, W., and Kellaway, C.H., 1938, Liberation of histamine and formation of lysocithin-like substances by cobra venom, J. Physiol., 94: 187–226.PubMedGoogle Scholar
  2. 2.
    Vogt, W., 1958, Naturally occuring lipid soluble acids of pharmacological interest, Pharmacol. Rev., 10: 407–435.PubMedGoogle Scholar
  3. 3.
    Borgeat, P., Hamberg, M., and Samuelsson, B., 1977, Transformation of arachidonic acid and homo-y-linolenic acid by rabbit polymorphonuclear leukocytes, J. Biol. Chem., 251:7816–7820 and correction, 1977, 252: 8772.Google Scholar
  4. 4.
    Borgeat, P., and Samuelsson, B., 1979, Arachidonic acid metabolism in polymorphonuclear leukocytes: Unstable intermediate in formation of dihydroxy acids, Proc. Natl. Acad. Sci. USA, 76: 3213–3217.PubMedCrossRefGoogle Scholar
  5. 5.
    Râdmark, O., Malmsten, C., Samuelsson, B., Goto, G., Marfat, A., and Corey, E.J., 1980, Leukotriene A. Isolation from human polymorphonuclear leukocytes, J. Biol. Chem. 255: 11828–11831.PubMedGoogle Scholar
  6. 6.
    Râdmark, O., Malmsten, C., Samuelsson, B., Clark, D.A., Goto, G., Marfat, A., and Corey, E.J., 1980, Leukotriene A: stereo-chemistry and enzymatic conversion to leukotriene B, Biochem. Biophys. Res. Commun, 92: 954–961.PubMedCrossRefGoogle Scholar
  7. 7.
    Borgeat, P., and Samuelsson, B., 1979, Metabolism of arachidonic acid in polymorphonuclear leukocytes, J. Biol. Chem. 254: 7865–7869.PubMedGoogle Scholar
  8. 8.
    Hammarström, S., Murphy, R.C., Samuelsson, B., Clark, D.A., Mioskowski, C., and Corey, E.J., 1979, Structure of leukotriene C identification of the amino acid part, Biochem. Biophys. Res. Commun., 91: 1266–1272.PubMedCrossRefGoogle Scholar
  9. 9.
    Râdmark, O., Malmsten, C., and Samuelsson, B., 1980, Leukotriene A4: Enzymatic conversion to leukotrien C4, Biochem. Biophys. Res. Commun, 96: 1679–1687.PubMedCrossRefGoogle Scholar
  10. 10.
    Örning, L., Hammarström, S., and Samuelsson, B., 1980, Leukotriene D: A slow reacting substance from rat basophilic leukemia cells, Proc. Natl. Acad. Sci. USA, 77: 2014–2017.CrossRefGoogle Scholar
  11. 11.
    Bernström, K., and Hammarström, S., Metabolism of leukotriene D by porcine kidney, J. Biol. Chem.Google Scholar
  12. 12.
    Lewis, R.A., Drazen, J.M., Austen, K.F., Clark, D.A., and Corey, E.J., Identification of the C(6)-S-conjugate of leukotriene A with cystein as a naturally occuring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry of biological activity, Biochem. Res. Commun., 96: 271–277, 1980.Google Scholar
  13. 13.
    Murphy, R.C., Hammarström, S., and Samuelsson, B., 1979, Leukotriene C: A slow-reacting substance from murine mastocytoma cells, Proc. Natl. Acad. Sci. USA, 76: 4275–4279.CrossRefGoogle Scholar
  14. 14.
    Morris, H.R., Taylor, G.W., Piper, P.J., Samhoun, M.N., and Tippins, J.R., 1980, Slow reacting substance (SRSs): the structure identification of SRSs from rat basophil leukemia (RBL-1) cells, Prostaglandins, 19: 185–201.PubMedGoogle Scholar
  15. 15.
    Sok, D.-E., Pai, J.-K., Atrache, V., and Sih, C.I., 1980, Characterization of slow reacting substances (SRSs) of rat basophilic leukemia (RBL-1) cells: Effect of cysteine on SRS profile, Proc. Natl. Acad. Sci. USA, 77: 6481–6485.PubMedCrossRefGoogle Scholar
  16. 16.
    Borgeat, P., and Samuelsson, B., 1979, Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes, J. Biol. Chem., 254: 2643–2646.PubMedGoogle Scholar
  17. 17.
    Borgeat, P., and Samuelsson, B., 1979, Arachidonic acid metabolism in polymorphonuclear leukocytes. Effects of ionophore A23187, Proc. Natl. Acad. Sci. USA, 76: 2148–2152.PubMedCrossRefGoogle Scholar
  18. 18.
    Hansson, G., and Râdmark, O., 1980, Leukotriene C4: Isolation from human polymorphonuclear leukocytes, FEBS Lett., 122: 87–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Bach, M.K., Brashler, J.R., Hammarström, S., and Samuelsson, B., 1980, Identification of a component of rat mononuclear cells SRS as leukotriene D, Biochem. Biophys. Res. Commun, 93: 1121–1126.Google Scholar
  20. 20.
    Lewis, R.A., Austen, K.F., Drazen, I.M., Clark, D.A., Marfat, A., and Corey, E.J., 1980, Slow reacting substances of anaphylaxis: Identification of leukotrienes C-1 and D from human and rat sources, Proc. Natl. Acad. Sci. USA, 77: 3710–3714.PubMedCrossRefGoogle Scholar
  21. 21.
    Morris, H.R., Taylor, G.W., Piper, P.W., Tippins, J.R., 1980, Structure of slow-reacting substance of anaphylaxis from guinea-pig lung, Nature, 285: 104–106.PubMedCrossRefGoogle Scholar
  22. 22.
    Rouzer, C.A., Scott, W.A., Cohn, Z.A., Blackburn, P., and Manning, I.M., 1980, Mouse peritoneal macrophages release leukotriene C in response to a phagocytic stimulus, Proc. Natl. Acad. Sci. USA, 77: 4928–4932.PubMedCrossRefGoogle Scholar
  23. 23.
    Houglum, I., Pai, I.-K., Atrache, B., Sok, D.-E., and Sih, Ch.I., 1980, Identification of the slow reacting substances from cat paws, Proc. Natl. Acad. Sci, USA, 77: 5688–5692.PubMedCrossRefGoogle Scholar
  24. 24.
    Cromwell, O., Morris, H.R., Hodson, M.E., Walport, M.I., Taylor, G.W., Battern, I., and Kay, A.B., 1981, Identification of leukotriene D and B in sputum from cystic fibrosis patients, Lancet, 11, 164–165.CrossRefGoogle Scholar
  25. 25.
    Jubiz, W., Rada mark, 0., Lindgren, J.A., Malmsten, C., and Samuelsson, B., 1981, Novel leukotrienes: products formed by initial oxygenation of arachidonic acid at C-15, Biochem. Biophys. Res., Commun., 99, 970–986.CrossRefGoogle Scholar
  26. 26.
    Lundberg, U., Râdmark, 0., Malmsten, C., and Samuelsson, B., 1981, Transformation of 15-hydroperoxy-5,9,11,13-eicosatetraenoic acid into novel leukotrienes, FEBS Lett., 126: 127–132.Google Scholar
  27. 27.
    Corey, E.J., Marfat, A., and Goto, G., 1980, Simple synthesis of the 11,12-oxido and 14,15-oxido analogues of leukotriene A and the corresponding conjugates with glutathione and cysteinylglycine. Analogues of leukotrienes C and D, J. Am. Chem. Soc., 102: 6608–6609.Google Scholar
  28. 28.
    Corey, E.J., Clark, D.A., Goto, G., Marfat, A., Mioskowski, Ch., Samuelsson, B., and Hammarström, S., 1980, Stereospecific total synthesis of a “Slow Reacting Substance of Anaphylaxis,” leukotriene C-1, J. Am. Chem. Soc. 102: 1436–1439.CrossRefGoogle Scholar
  29. 29.
    Hammarström, S., 1981, Conversion of 5, 8, 11-eicosatrienoic acid to leukotriene C3 and D3, J. Biol. Chem, 256: 2275–2279.PubMedGoogle Scholar
  30. 30.
    Hammerström, S., 1981, Conversion of dihomo-y-linolenic acid to an isomer of leukotriene C3 oxygenated at C-8, J. Biol. Chem., 256: 7712–7714.Google Scholar
  31. 31.
    Hammerström, S., 1980, Leukotriene C5: A slow reacting substance derived from eicosapentaenoic acid, J. Biol. Chem., 255: 7093–7094.Google Scholar
  32. 32.
    Pickett, W.C., Murphy, R.C., Culpand, B., and Lands, W.E.M., 1981, Modulation of leukotriene biosynthesis associated with increased concentration of endogenous eicosapentaenoic acid, Abstr. International symposium on leukotrienes and other lipoxygeanse products, Florence (Italy).Google Scholar
  33. 33.
    Flower, R.J., Gryglewski, R.J., Herbaczyniska-Cedro, K., and Vane, J.R., 1972, Effects of anti-inflammatory drugs on prostaglandin biosynthesis, Nature 238: 104–104.Google Scholar
  34. 34.
    Blackwell, G.I., Carnuccio, R., DiRosa, M., Flower, R.J., Parente, L., and Persico, P., 1980, Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids, Nature 287: 147–149.PubMedCrossRefGoogle Scholar
  35. 35.
    Hamberg, M., and Samuelsson, B., 1974, Prostaglandin endoperoxides. Novel Transformations of arachidonic acid in human platelets, Proc. Natl. Acad. Sci. USA, 71: 3400–3404.PubMedCrossRefGoogle Scholar
  36. 36.
    Bokoch, G.M., and Reed, P.W., 1981, Evidence for inhibition of leukotriene A4 synthesis by 5,8,11,14-eicosatetraynoic acid in guinea pig polymorphonuclear leukocytes, J. Biol. Chem., 256: 4156–4159.PubMedGoogle Scholar
  37. 37.
    Hammarström, S., 1977, Selective inhibition of platelet n-8 lipoxygenase by 5,8,11-eicosatriynoic acid, Biochim. Biophys. Acta, 487: 517–519.CrossRefGoogle Scholar
  38. 38.
    Örning, L., and Hammarström, S., 1980, Inhibition of leukotriene C and leukotriene D biosynthesis, J. Biol. Chem., 255: 8023–8026.PubMedGoogle Scholar
  39. 39.
    Blackwell, G.J., and Flower, R.J., 1978, 1-Phenyl-3-pyrazolidane: an inhibitor of cyclo-oxygenase and lipoxygenase pathways in lung and platelets, Prostaglandins 16: 417–425.Google Scholar
  40. 40.
    Higgs, G.A., Flower, R.J., and Vane, J.R., 1979, A new approach to anti-inflammatory drugs, Biochem. Pharmacol. 28: 1959–1961.PubMedCrossRefGoogle Scholar
  41. 41.
    Radmark, O., Malmsten, C., and Samuelsson, B., 1980, The inhibitory effects of BW 755C on arachidonic acid metabolism in human polymorphonuclear leukocytes, FEBS Lett., 110: 213–215.PubMedCrossRefGoogle Scholar
  42. 42.
    Siegel, M.I., McConnell, R.T., Bosner, R.W., and Cuatrecasas, P., 1981, The production of 5-HETE and leukotriene B in rat neutrophils from carrageenan pleural exudates, Prostaglandins, 21: 123–132.PubMedGoogle Scholar
  43. 43.
    Ramberg, M., 1976, On the formation of thromboxane B2 and 12Lhydroxy-5,8,10,14-eicosatetraenoic acid (12–0H-20:4) in tissues from the guinea pig, Biochem. Biophys. Acta, 431: 651–654.CrossRefGoogle Scholar
  44. 44.
    Armour, C.L., Hughes, I.M., Seale, I.P., and Temple, D.M., 1981, Effect of lipoxygenase inhibitors on relase of slow-reacting substances from human lung, Eur. J. Pharmacol., 72: 93–96.PubMedCrossRefGoogle Scholar
  45. 45.
    Vanderhoek, J.Y., Bryant, R.W., and Bailey, J.M., 1980, Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid, J. Biol. Chem. 255: 10064–10065.PubMedGoogle Scholar
  46. 46.
    Lindgren, J.A., Hansson, G., and Samuelsson, B., 1981, Formation of novel hydroxylated eicosatetraenoic acids in preparations of human polymorphonuclear leukocytes, FEBS Lett., 128: 329–335.PubMedCrossRefGoogle Scholar
  47. 47.
    Hansson, G., Lindgren, J.A., Dahlén, S.-E., Hedqvist, P., and Samuelsson, B., 1981, Identification and biological activity of novel w-oxidized metabolites of leukotriene B4 from human leukocytes, FEES Lett., 130: 107–112.CrossRefGoogle Scholar
  48. 48.
    Jubiz, W., Râdmark, O., Malmsten, C., Hansson, G., Lindgren, J.A., Palmblad, J., Udén, A.-M., and Samuelsson, B., A novel leukotriene produced by stimulation of leukocytes with formyl-methionyl-leucyl-phenylalanine (fMLP), submitted for publication.Google Scholar
  49. 49.
    Örning, L., Bernström, K., and Hammarström, S., 1981, Formation of leukotrienes E in rat basophilic leukemia cells, Eur. J. Biochem.Google Scholar
  50. 50.
    Falkenhein, S.F., Parker, C.K., and Huber, M.M., 1980, Sequential conversion of the glutathionyl side chain of slow reacting substance (SRS) to cysteinyl-glycine and cysteine in rat basophilic leukemia cells stimulated with A23187, Prostaglandins, 20: 863–886.PubMedGoogle Scholar
  51. 51.
    Parker, C.W., Del Koch, M., Huber, M.M., and Falkenhein, S.F., 1980, Formation of the cysteinyl form of slow reacting substance (leukotriene E4) in human plasma, Biochem. Biophys. Res. Commun., 97: 1038–1046.CrossRefGoogle Scholar
  52. 52.
    Piper, P.J., Samhoun, M.N., Tippins, J.R., Williams, T.J., Palmer, M.A., and Peck, M.J., 1981, Pharmacological studies on pure SRS-A and synthetic leukotrienes C4 D4. in: SRS-A and Leukotrienes (ed. P.J. Piper) John Wiley and Sons, Ltd., New York, pp. 81–99.Google Scholar
  53. 53.
    Hammarström, S., 1982, Metabolism of leukotriene C3. in: Advances in Prostaglandin, Thromboxane and Leukotriene Research, (eds. B. Samuelsson and R. Paoletti ), Raven Press, New York.Google Scholar
  54. 54.
    Goetzl, E.J., Wasserman, S.I., and Austen, K.F., 1975, Inactivation of slow reacting substance of anaphylaxis by human eosinophil arylsulfatase, J. Immunol., 114: 645–649.PubMedGoogle Scholar
  55. 55.
    Metcalfe, D.D., Corash, L.M., and Kalimer, M., 1979, Human platelet arylsulfatase: identification and capacity to destroy SRS-A, Immunol. 37: 723–729.Google Scholar
  56. 56.
    Orange, R.P., and Moore, E.B.,1976, Functional characterization of rat mast cell arylsulfatase activity, J. Immunol., 117: 2191–2196.Google Scholar
  57. 57.
    Sok, D.-E., Paí, J.-K., Atrache, V., Kang, Y.-C., and Sih, C.J. 1981, Enzymatic inactivation of SRS-Cys-Gly ( Leukotriene D ), Biochem. Biophys. Res. Commun., 101: 222–229.Google Scholar
  58. 58.
    Appelgren, L.E., and Hammarstrom, S., 1981, submitted for publication.Google Scholar
  59. 59.
    Hammarstrom, S., Bernstrom, K., Orníng, L., Dahlen, S.-E., Hedqvist, P., Smedegard, G., and Revenas, B., 1981; in: Rapid in vivo metabolism of leukotriene C3 in the monkey, macaca irus, Biochem. Biophys. Res. Commun., 101: 1109–1115.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Pär Westlund
    • 1
  • Elisabeth Granström
    • 1
  1. 1.Department of Physiological ChemistryKarolinska InstitutetStockholmSweden

Personalised recommendations