Diagnostic Use of Urinary Thromboxane B2

  • M. L. Foegh
  • G. B. Helfrich
  • G. E. Schreiner
  • P. W. Ramwell
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 54)


Although radioimmunoassy (RIA) for prostaglandins has been employed for a decade, the clinical diagnostic use of any of the arachidonic acid metabolites has not been described until recently [1]. The discovery by Fichman et al. [2] that patients with Bartter’s Syndrome had elevated plasma and urine prostaglandins concentrations encouraged many nephrologists, including ourselves [3], to take an interest in the clinical utility of such prostaglandin measurements. The clinical diagnosis of Bartter’s Syndrome, however, is not based on prostaglandin analyses, and consequently there is no requirement for the assay other than for the purpose of diagnostic confirmation. We have, for the first time, found potential diagnostic validity for one of the arachidonic acid metabolites, namely,thromboxane B2 (TXB2). This compound is a stable product of thromboxane A2 (TXA2) which is chemically labile with a half-life at pH 7.4 of 30 sec [4]. Thromboxane B2 has little biological activity, but large doses reduce the inactivation of PGE2 by pulmonary transit in dogs [5]. In contrast TXA2 is a powerful spasmogenic agent on all four classes of smooth muscle and aggregates both platelets and leukocytes which implies that TXA2 is likely to have a deleterious effect on the microcirculation.


Deep Venous Thrombosis Allograft Rejection Rejection Episode Arachidonic Acid Metabolite Kidney Transplant Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Foegh, J. F. Winchester, G. B. Helfrich, M. Zmudka, C. Cooley, P. W. Ramwell, and G. E. Schreiner, Urinary i-TXB2 in renal allograft rejection, Lancet, 2: 431–434 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    M. P. Fichman, N. Telfev, P. Zia, P. Spreckart, M. Golub, and R. Rude, Role of prostaglandins in the pathogenesis of Bartter’s syndrome, Am. J. Med., 60: 785–797 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Norby, W. Flamenbaum, R. Lentz, and P. Ramwell, Prostaglandins and aspirin therapy in Bartter’s syndrome, 2: 604–606 (1976).Google Scholar
  4. 4.
    B. Samuelsson, Introduction: New trends in prostaglandin research, Adv. Prostaglandin Thrombox. Res., 1: 1–6 (1976).Google Scholar
  5. 5.
    P. A. Kot, J. C. Rose, P. W. Ramwell, T. M. Fitzpatrick, M. F. Blood, and L. S. Friedman, Modification of the cardiovascular actions of prostaglandins by thromboxane B2, Adv. Prostaglandin Thrombox. Res., 7: 679–682 (1980).Google Scholar
  6. 6.
    C. Patrono, G. Ciabattoni, F. Pugliese, E. Pinca, G. Castrucci, A. DeSalvo, M. A. Satta, and M. Parachini, Radioimmunoassay of serum thromboxane B2: A simple method of assessing pharmacologic effects of platelet function, Adv. Prostaglandin Thrombox. Res., 6: 187–191 (1980).Google Scholar
  7. 7.
    L. J. Roberts, B. J. Sweetman, and J. A. Oates, Metabolism of Thromboxe B2 in Man, J. Biol. Chem., 256: 8384–8393 (1981).PubMedGoogle Scholar
  8. 8.
    J. E. Shaw and P. W. Ramwell, Separation, identification, and estimation of prostaglandins, Methods of Biochemical Analyses, 17: 325–371 (1969).CrossRefGoogle Scholar
  9. 9.
    R. J. Gryglewski, Steroid hormones, anti-inflammatory steroids and prostaglandins, Pharmacol. Res. Commun., 8: 337–348 (1976).Google Scholar
  10. 10.
    D. C. B. Mills and J. B. Smith, The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3’:5’-cyclic-monophosphate in platelets, Biochem. J., 121: 185189 (1971).Google Scholar
  11. 11.
    S. Moncada, S. Bunting, K. Mullane, P. Thorogood, J. R. Vane, A. Raz, and P. Needleman, Imidazole: A selective inhibitor of thromboxane synthetase, Prostaglandins, 13: 611–618 (1972).Google Scholar
  12. 12.
    C. Leithner, H. Sinzinger, and B. A. Peskar, Increased plasma levels of 6-oxo-prostaglandin Fla a stable metabolite of prostacyclin, in acute kidney transplant rejection, Prostaglandin and Med., 7: 15–18 (1981).CrossRefGoogle Scholar
  13. 13.
    T. H. Matthew, D. T. Lewers, G. P. Hogan, D. Rubio-Paez, H. J. Alter, T. Antonovych, H. Bauer, J. F. Maher, and G. E. Schreiner, The induction of vascular renal allograft rejection by leukocyte sensitization, J. Lab. Clin. Med., 77: 396–409 (1971).PubMedGoogle Scholar
  14. 14.
    F. A. Kuehl, E. A. Ham, J. L. Humes, C. A. Winther, and R. W. Egan, Biochemical aspects of cyclo-oxygenase inhibition, in: “Prostaglandin Synthetase Inhibitors: New Clinical Applications” (P. Ramwell, ed.), Alan R. Liss, New York, pp. 73–86 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. L. Foegh
    • 1
  • G. B. Helfrich
    • 1
  • G. E. Schreiner
    • 1
  • P. W. Ramwell
    • 1
  1. 1.Division of Nephrology, Department of Medicine Division of Renal Transplantation Department of Surgery Department of Physiology and BiophysicsGeorgetown University Medical CenterUSA

Personalised recommendations