Inhibition of Arachidonic Acid Metabolism

  • J. A. Salmon
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 54)


Prostaglandins and related compounds derived from arachidonic acid have been implicated as the causative factor(s) in the pathogenesis of many conditions including inflammation, asthma, Bartter’s syndrome, dysmenorrhoea, threatened abortion and premature labour. Thus, compounds which inhibit metabolism of arachidonic acid have a wide therapeutic potential. Additionally, such inhibitors should prove invaluable to the experimental investigator to enable, for example, evaluation of the physiological roles of the prostaglandins.


Arachidonic Acid Arachidonic Acid Metabolism Prostaglandin Biosynthesis Prostaglandin Synthetase Prostaglandin Endoperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleton, R.A. and Brown, K. (1979): Conformational requirements at the prostaglnadin cyclo-oxygenase receptor site: a template for designing non-steroid anti-inflammatory drugs. Prostaglandins, 18: 29–34.PubMedGoogle Scholar
  2. Austen, K.F. (1978): Homeostasis effector systems which can also be recruited for immunologic reactions. J. Immunol., 121: 793–805.PubMedGoogle Scholar
  3. Bell, R.L., Kennerly, D.A., Stanford, N., Majerus, P.W. (1979): Diglyceride lipase: A pathway for arachidonate release from human platelets. In: Advances in Prostaglandin and Thromboxane Research Vol. 8., edited by B. Samuelsson, P. Ramwell and R. Paoletti, pp. 219–224, Raven Press, New York.Google Scholar
  4. Bhattacherjee, P., Eakins, K.E. and Hammond, B. (1981): Arachidonic acid lipoxygenation products and leucocyte accumulation in the rabbit eye. Br. J. Pharmac., 73: 254P.Google Scholar
  5. Billah, M.M., Lapetina, E.G. and Cuatrecasas, P. (1979): Phosphatidylinositol-specific phospholipase C of platelets: association with 1,2-diacylglycerol-kinase and inhibition by cyclic AMP. Biochem. Biophys. Commun., 90: 92–98.Google Scholar
  6. Blackwell, G.J., Carnuccio, R., Di Rosa, M., Flower, R.J., Parente, L. and Persico, P. (1980): Macrocortin: a polypeptide causing the antiphospholipase effect of glucocorticoids. Nature, 287: 147–149.PubMedCrossRefGoogle Scholar
  7. Blackwell, G.J., Carnuccio, R., Di Rosa, M., Flower, R.J., Langham, C.S.J., Parente, L., Persico, P., Russell-Smith, N.C. and Stone, D. (1981): Glucocorticoid-induced anti-phospholipase protein(s) are anti-inflammatory. Sent for publication.Google Scholar
  8. Blackwell, G.J., Duncombe, W.G., Flower, R.J., Parsons, M.F. and Vane, J.R. (1977): The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs. Br. J. Pharmac., 59: 353–366.Google Scholar
  9. Blackwell, G.J., Flower, R.J., Nijkamp, F.P. and Vane, J.R. (1978a): Phospholipase A2 activity of guinea pig isolated perfused lungs: stimulation, and inhibition by anti-inflammatory steroids. Br. J. Pharmac., 62: 79–89.Google Scholar
  10. Blackwell, G.J., Flower, R.J., Russell-Smith, N., Salmon, J.A., Thorogood, P.B. and Vane, J.R. (19783): 1-n-Butylimidazole: a potent and selective inhibitor of “thromboxane synthetase”. Br. J. Pharmac., 64: 435 P.Google Scholar
  11. Blackwell, G.J., Flower, R.J., Russell-Smith, N., Salmon, J.A., Thorogood, P.B. and Vane, J.R. (1978c). Prostacyclin is produced in whole blood. Br. J. Pharmac., 64: 436P.Google Scholar
  12. Bokoch, G.M. and Reed, P.N. (1981): Evidence for inhibition of leukotriene A, synthesis by 5,8,11,14-eicosatetraynoic acid in guinea pig polymorphonuclear leukocytes. J. Biol. Chem., 256: 4156–4159.Google Scholar
  13. Borgeat, P., Hamberg, M. and Samuelsson, B. (1976): Transformation of arachidonic acid and homo-y-linolenic acid by rabbit polymorphonuclear leukocytes. J. Biol. Chem., 251: 7816–7820.Google Scholar
  14. Burka, J.F. and Flower, R.J. (1979): Effects of modulators of arachidonic acid metabolism on the synthesis and release of slow-reacting substance of anaphylaxis. Br. J. Pharmac., 65: 35–41.Google Scholar
  15. Bunting, S., Castro, S., Salmon, J.A. and Moncada, S. (1981): Effect of thromboxane synthetase inhibitors in shock induced by heterologous blood in cats. To be published.Google Scholar
  16. Carnuccio, R., Di Rosa, M., Flower, R.J. and Pinto, A. (1981): The inhibition by hydrocortisone of prostaglnadin biosynthesis in rat peritoneal leucocytes is correlated with intracellular macrocortin levels. Br. J. Pharmac., in press.Google Scholar
  17. Carr, S.C., Higgs, G.A., Salmon, J.A. and Spayne, J.A. (1981): The effects of arachidonate lipoxygenase products on leukocyte migration in rabbit skin. Br. J. Pharmac., 73: 253–254 P.Google Scholar
  18. Corey, E.J., Clark, D.A., Goto, G., Marfat, A., Mioskowski, C., Samuelsson, B. and Hammarstrom, S. (1980): Stereospecific total synthesis of a slow reacting substance of anaphylaxis, leukotriene C-1. J. Am. Chem. Soc., 102: 1436–1439.Google Scholar
  19. Cook, J.A., Wise, W.C. and Halushka, P.V. (1980): Elevated thromboxane levels in the rat during endotoxic shock. J. Clin. Invest., 65: 227–230.Google Scholar
  20. Cottee, F., Flower, R.J., Moncada, S., Salmon, J.A. and Vane, J.R. (1977): Synthesis of 6-keto-PGF by rat seminal vesicle microsomes. Prostaglandins, 14: 413–42310PubMedGoogle Scholar
  21. Danon, A. and Assouline, G. (1978): Inhibition of prostaglandin biosynthesis by corticosteroids requires RNA and protein synthesis. Nature, 273: 552–554.PubMedCrossRefGoogle Scholar
  22. Di Rosa, M. and Persico, P. (1979): Mechanism of inhibition of prostaglandin biosynthesis by hydrocortisone in rat leucocytes. Br. J. Pharmac., 66: 161–163.Google Scholar
  23. Ferreira, S.H., Moncada, S. and Vane, J.R. (1971): Indomethacin and aspirin abolish prostaglandin release from the spleen. Nature New Biol., 231: 237–239.PubMedCrossRefGoogle Scholar
  24. Ferreira, S.H. and Vane, J.R. (1974a): New aspects of the mode of action of non-steroid anti-inflammatory drugs. Ann. Rev. Pharmac., 14: 5773.Google Scholar
  25. Ferreira, S.H. and Vane, J.R. (1974o): Aspirin and the prostaglandins. In: The Prostaglandins, Vol. 2, edited by P.W. Ramwell, pp. 1–47, Plenum Press, New York.CrossRefGoogle Scholar
  26. Ferreira, S.H. and Vane, J.R. (1979): Mode of action of anti-inflammatory agents which are prostaglandin synthetase inhibitors. In: Anti-Inflammatory drugs, edited by J.R. Vane and S.H. Ferreira, pp. 348398, Springer-Verlag, Berlin.Google Scholar
  27. Fitzpatrick, F.A. and Gorman, R.R. (1978): A comparison of imidazole and 9,11-azoprosta-5,13-dienoic acid. Two selective thromboxane synthetase inhibitors. Biochim. Biophys. Acta., 539: 162–172.Google Scholar
  28. Fitzpatrick, F.A., Gorman, R., Bundy, G., Honohan, T., McGuire, J. and Sun, F. (1979): 9,11-immunoepoxyprosta-5,13-dienoic acid is a selective thromboxane A2 synthetase inhibitor. Biochim. Biophys. Acta., 572: 238–244.Google Scholar
  29. Flower, R.J. (1974): Drugs which inhibit prostaglandin biosynthesis. Pharmac. Revs., 26: 33–67.Google Scholar
  30. Flower, R.J. and Blackwell, G.J. (1976): The importance of phospholipase A2 in prostaglandin biosynthesis. Biochem. Pharmac., 25: 285–291.Google Scholar
  31. Flower, R.J. and Blackwell, G.J. (1979): Anti-inflammatory steroids induce biosynthesis of a phospholipase A inhibitor which prevents prostaglandin generation. Nature, 278: 6–459.CrossRefGoogle Scholar
  32. Flower, R.J., Moncada, S. and Vane, J.R. (1980): Analgesic-antipyretics and anti-inflammatory agents; drugs employed in the treatment of gout. In: Pharmacological Basis of Therapeutics, 6th Edition, edited by A.G. Gilman, L.S. Goodman and A. Gilman, pp. 682–728, MacMillan Publishing Co., New York.Google Scholar
  33. Flower, R.J., Russell-Smith, N.C., Salmon, J.A. and Thorogood, P. (1981). 1-Benzylimidazole: a potent and selective inhibitor of “thromboxane synthetase” in vivo. Br. J. Pharmac., in press.Google Scholar
  34. Flower, R.J. and Vane, J.R. (1974): Inhibition of prostaglandin synthesis. Biochem. Pharmac., 23: 1439–1450.Google Scholar
  35. Ford-Hutchinson, A.W., Bray, M.A., Doig, M.V., Shipley, M.E. and Smith, M.J.H. (1980): Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leucocytes. Nature, 286: 264–265.PubMedCrossRefGoogle Scholar
  36. Goetzl, E. and Sun, F.F. (1979): Generation of unique mono-hydroxy eicosatetraenoic acids from arachidonic acid by human neutrophils. J. Exp. Med., 150: 406–411.Google Scholar
  37. Goetzl, E.J., Woods, J.M. and Gorman, R.R. (1977): Stimulation of human eosinophil and neutrophil polymorphonuclear leukocyte chemotaxis and random migration by 12-L-Hydroxy-5,8,10,14-eicosatetraenoic acid. J. Clin. Invest., 59: 179–183.Google Scholar
  38. Gryglewski, R.J., Bunting, S., Moncada, S., Flower, R.J. and Vane, J.R. (1976): Arterial walls are protected against deposition of platelet thrombi by a substance ( Prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins, 12: 685–713.Google Scholar
  39. Gryglewski, R.J., Panczenko, B., Korbut, R., Grodzinska, L., Ocetkiewicz, A. (1975): Corticosteroids inhibit prostaglandin release from perfused mesenteric blood vessels of rabbit and from perfused lungs of sensitized guinea pig. Prostaglandins, 10: 343–355.PubMedGoogle Scholar
  40. Gryglewski, R.J., Zmuda, A., Korbut, R., Krecioch, E. and Beiron, K. (1977): Selective inhibition of thromboxane A2 biosynthesis in blood platelets. Nature, 267: 627–628.PubMedCrossRefGoogle Scholar
  41. Gund, P. and Shen, T.Y. (1977): A model for the prostaglandin synthetase cyclo-oxygenation site and its inhibition by anti-inflammatory arylacetic acids. J. Med. Chem., 20: 1146–1152.Google Scholar
  42. Ham, E.A., Cirillo, V.J., Zanetti, M., Shen, T.Y., Kuehl, F.A. Jr. (1972): Studies on the mode of action of non-steroidal anti-inflammatory agents. In: Prostaglandins in Cellular Biology, edited by P.W. Ramwell and B.B. Phariss, pp. 343–352, Plenum Press, New York.Google Scholar
  43. Ham, E.A., Egan, R.W., Soderman, D.D., Gale, P.H. and Kuehl, F.A. Jr. (1979): Peroxidase-dependent deactivation of prostacyclin synthetase. J. Biol. Chem., 254: 2191–2194.Google Scholar
  44. Hamberg, M. (1972): Inhibition of prostaglnadin synthesis in man. Biochem. Biophys. Res. Comm., 49: 720–726.Google Scholar
  45. Hamberg, M. (1976): On the formation of thromboxane B and 12L-hydroxy 5,8,10,14-eicosatetraenoic acid (12-ho-20:4) in tissues from the guinea pig. Biochim. Biophys. Acta., 431: 651–654.Google Scholar
  46. Hamberg, M. and Samuelsson, B. (1974): Prostaglandin endoperoxides. Novel transformation of arachidonic acid in human platelets. Proc. Nat. Acad. Sci. USA, 71: 3400–3404.Google Scholar
  47. Hammarström, S. (1977): Selective inhibition of platelet n-8 lipoxygenase by 5,8,11-eicosatriynoic acid. Biochim. Biophys. Acta., 487: 517–519.Google Scholar
  48. Hammarstrtm, S., Hamberg, M., Samuelsson, B., Duells, E.A., Stawski, M. and Voorhees, J.J. (1975): Increased concentrations of non-esterified arachidonic acid, 12L-hydroxy, 5,8,10,14-eicosatetraenoic acid, prostaglandin E2 and prostaglandin F2 in epidermis of psoriasis. Proc. Nat. Acad. Sci. USA, 72: 5130–5131.Google Scholar
  49. Harland, W.A., Gilbert, J.D. and Brooks, C.J.W. (1973): Lipids of human atheroma VIII. Oxidised derivatives of cholesterol linoleate. Biochim. Biophys. Acta., 316: 378–385.Google Scholar
  50. Harland, W.A., Gilbert, J.D., Steel, G. and Brooks, C.J.W. (1972): Lipids of human atheroma. Part 5. The occurance of a new group of polar sterol esters in various stages of human atherosclerosis. Atherosclerosis, 13: 239–246.Google Scholar
  51. Herbaczynska-Cedro-K. and Staszewska-Barczak, J. (1974): Adrenocortical hormones and the release of prostaglandin-like substances. Abstracts of the Second Congress of the Hungarian Pharmacological Society, Budapest, October, 1974. Akademiai Kiado, Budapest, p. 157.Google Scholar
  52. Higgs, G.A., Eakins, K.E., Mugridge, K.G., Moncada, S. and Vane, J.R. (1980): The effects of non-steroid anti-inflammatory drugs on leukocyte migration in carrageenin-induced inflammation. Eur. J. Pharmac., 66: 81–86.Google Scholar
  53. Higgs, G.A., Flower, R.J. and Vane, J.R. (1979): A new approach to anti-inflammatory drugs. Biochem. Pharmac., 28: 1959–1961.Google Scholar
  54. Hirata, F., Schiffmann, E., Venkatasubramanian, K., Salomon, D. and Axelrod, J. (1980): A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc. Nat. Acad. Sci., USA, 77: 2533–2536.Google Scholar
  55. Hirata, F., del Carmine, R., Nelson, C.A., Axelrod, J., Schiffman, E., Warabi, A., De Blas, A.L., Nirenberg, M., Manganiello, V., Vaughan, M., Kumagai, S., Green, I., Decker, J.L. and Steinberg, A.D. (1981): Presence of autoantibody for phospholipase inhibitory protein, lipomodulin, in patients with rheumatic diseases. Proc. Nat. Acad. Sci. USA, 78: 3190–3194.Google Scholar
  56. Hong, S.L. and Levine, L. (1976): Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids. Proc. Nat. Acad. Sci., USA, 73: 1720–1734.Google Scholar
  57. Hsueh, W., Desai, U., Gonzales-Crussi, F., Lamb, R. and Chu, A. (1981): Two phospholipase pools for prostaglandin synthesis in macrophages. Nature, 290: 710–713.PubMedCrossRefGoogle Scholar
  58. Kantrowitz, F., Robinson, D.R., McGuire, M.B. and Levine, L. (1975): Corticosteroids inhibit prostaglandin production by rheumatoid synovia. Nature, 258: 737–739.PubMedCrossRefGoogle Scholar
  59. Klickstein, L.B., Shapleigh, T. and Goetzl, E.J. (1980): Unique products of the oxygenation of arachidonic acid in synovial fluid in rheumatoid arthritis and spondylarthritis. Arth. Rheum., 23: 704–705.Google Scholar
  60. Ku, E.C. and Wasvary, J.M. (1975): Inhibition of prostaglandin synthetase by piroprofen: studies with sheep vesicle enzyme. Biochim. Biophys. Acta., 384: 360–368.Google Scholar
  61. Kulkarni, P.S. and Eakins, K.E. (1976): N-0164 inhibits generation of thromboxane A2-like activity from prostaglandin endoperoxides by human platelet microsomes. Prostaglandins, 12: 465–469.PubMedGoogle Scholar
  62. Kunze, H. and Vogt, W. (1971): Significancce of phospholipase A for prostaglandin formation. Ann. N.Y. Acad. Sci., 180: 123–125.Google Scholar
  63. Lands, W.E.M. and Rome, L.H. (1976): Inhibition of prostaglandin biosynthesis. In: Prostaglandins: Chemical and Biochemical Aspects, edited by S.M.M. Karim, pp. 87–137, MTP Press, Lancaster.CrossRefGoogle Scholar
  64. Lands, W.E.M. and Samuelsson, B. (1968): Phospholipid precursors of prostaglandins. Biochim. Biophys. Acta., 164: 426–429.Google Scholar
  65. Lands, W.E.M., LeTellier, P.R., Rome, L.H., Vanderhoek, J.Y. (1973): Inhibition of prostaglandin biosynthesis. In: Advances in the Biosciences, Vol. 9 edited by S. Bergstrom and S. Bernhard pp. 15–28, Pergamon Press, Oxford.Google Scholar
  66. Lapetina, E.G. and Cuatrecasas, P. (1979): Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the release of serotonin. Biochim. Biophys. Acta., 573: 394–402.Google Scholar
  67. Lewis, G.P. and Piper, P.J. (1975): Inhibition of release of prostaglandins as an explanation of some of the actions of anti-inflammatory corticosteroids. Nature, 254: 308–311.PubMedCrossRefGoogle Scholar
  68. Moncada, S., Bunting, S., Mullane, K.M., Thorogood, P. and Vane, J.R. (1977): Imidazole: a selective potent antagonist of thromboxane synthetase. Prostaglandins, 13: 611–618.PubMedGoogle Scholar
  69. Moncada, S., Gryglewski, R.J., Bunting, S. and Vane, J.R. (1976a): An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263: 663–665.PubMedCrossRefGoogle Scholar
  70. Moncada, S., Gryglewski, R.J., Bunting, S. and Vane, J.R. (197613): A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (Prostaglandin X) which prevents platelet aggregation. Prostaglandins, 12: 715–733.Google Scholar
  71. Moncada, S. and Vane, J.R. (1978): Unstable metabolites of arachidonic acid and their role in haemostasis and thrombosis. Brit. Med. Bull., 34: 129–135.Google Scholar
  72. Morris, H.R., Taylor, G.W., Piper, P.J. and Tippins, J.R. (1980): Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature, 285: 104–106.PubMedCrossRefGoogle Scholar
  73. Murphy, R.C., Hammarstrlim, S. and Samuelsson, B. (1979): Leukotriene C: a slow reacting substance from murine mastocytoma cells. Proc. Nat. Acad. Sci. USA., 76: 4275–4279.Google Scholar
  74. Needleman, P., Wyche, A. and Raz, A. (1979): Platelet and blood vessel arachidonate metabolism and interactions. J. Clin. Invest., 63: 345–34 9.Google Scholar
  75. Nickander, R., McMahon, F.G. and Ridolfo, A.S. (1979). Nonsteroidal anti- inflammatory agents. Ann. Rev. Pharmac. Toxicol., 19: 469–490.Google Scholar
  76. Nijkamp, F.P., Flower, R.J., Moncada, S. and Vane, J.R. (1976). Partial purification of rabbit aorta contracting substance releasing factor and inhibition of its activity by anti-inflammatory steroids. Nature, 263: 479–482.PubMedCrossRefGoogle Scholar
  77. Nijkamp, F.P. and Ramakers, A.G.M. (1980): Prevention of anaphylactic bronchoconstriction by a lipoxygenase inhibitor. Eur. J. Pharmac., 62: 121–122.Google Scholar
  78. Orange, R.P. and Austen, K.F. (1969): SLow-reacting substance of anaphylaxis. Adv. Immunol., 10: 105–144.Google Scholar
  79. Orning, C. and Hammarstrtlm, S. (1980): Inhibition of leukotriene C and leukotriene D biosynthesis. J. Biol. Chem., 255: 8023–8026.Google Scholar
  80. Palmer, R.J., Stepney, R., Higgs, G.A. and Eakins, K.E. (1980): Chemokinetic activity of arachidonic acid lipoxygenase products on leukocytes from different species. Prostaglandins, 20: 411–418.PubMedGoogle Scholar
  81. Patrono, C., Ciabattoni, G., Pinca, E., Pugliese, F., Castrucci, G., De Salvo, A., Satta, M.A. and Peskar, B.A. (1980): Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb. Res., 17: 317–327.Google Scholar
  82. Patterson, R., Pruzansky, J.J. and Harris, K.E. (1981): An agent which releases basophil and mast cell histamine but blocks cyclo-oxygenase and lipoxygenase metabolism of arachidonic acid inhibits IgE mediated asthma in rhesus monkeys. J. Allergy Clin. Immunol., In press.Google Scholar
  83. Piper, P.J., Samhoun, M.N., Tippins, J.R., Williams, T.J., Palmer, M.A. and Peck, M.J. (1981): Pharmacological studies on pure SRS-A and synthetic leukotrienes C and DI. in: “SRS-A and Leukotrienes”, P.J. Piper, ed., John Wiley & Sons Ltd., New York, pp. 81–99.Google Scholar
  84. Prancan, A.V., Lefort, J., Chignard, M., Gerozissis, K., Dray, F. and Vargaftig, B.B. (1979): L8027 and 1-nonyl-imidazole as non-selective inhibitors of thromboxane synthesis. Eur. J. Pharmac., 60: 287–297.Google Scholar
  85. Radmark, O., Malmsten, C. and Samuelsson, B. (1980): The inhibitory effects of BW755C on arachidonic acid metabolism in human polymorphonuclear leukocytes. FEBS Lett., 110: 213–215.PubMedCrossRefGoogle Scholar
  86. Randall, R.W., Eakins, K.E., Higgs, G.A., Salmon, J.A. and Tateson, J.E. (1980): Inhibition of arachidonic acid cyclo-oxygenase and lipoxygenase activities of leukocytes by indomethacin and compound BW755C. Agents and Actions, 10: 553–555.PubMedCrossRefGoogle Scholar
  87. Rittenhouse-Simmons, J. (1979): Production of diglyceride from phosphatidylinositol in activated human platlets. J. Clin. Invest., 63: 580–587.Google Scholar
  88. Roth, G.J. and Majerus, P.W. (1975): The mechanism of the effect of aspirin on human platelets. J. Clin. Invest., 56: 624–632.Google Scholar
  89. Roth, G.J., Stanford, N. and Majerus, P.W. (1975): Acetylation of prostaglandin synthetase by aspirin. Proc. Nat. Acad. Sci. USA., 72: 3073–3076.Google Scholar
  90. Russo-Marie, F., Paing, M. and Duval, D. (1979): Involvement of glucocorticoid receptors in steroid-induced inhibition of prostaglandin secretion. J. Biol. Chem., 254: 8498–8504.Google Scholar
  91. Salmon, J.A., Smith, D.R., Flower, R.J., Moncada, S. and Vane, J.R. (1978): Further studies on the enzymatic conversion of prostaglandin endoperoxides into prostacyclin by porcine aorta microsomes. Biochim. Biophys. Acta., 523: 250–262.Google Scholar
  92. Samuelsson, B., Hammarström, S., Murphy, R.C. and Borgeat, P. (1980): Leukotrienes and slow reacting substance of anaphylaxis ( SRS-A ). Allergy, 35: 375–381.Google Scholar
  93. Scherphof, G.L., Scarpa, A. and Van Toorenenbergen, A. (1972): The effect of local anaesthetics on the hydrolysis of free and membrane-bound phospholipids catalyzed by various phospholipases. Biochim. Biophys. Acta., 270: 226–240.Google Scholar
  94. Shen, T.Y., Ham, E.A., Cirrillo, V.J., Zanetti, M. (1974): Structure-activity relationship of certain prostaglandin synthetase inhibitors. In: Prostaglandin Synthetase Inhibitors, edited by H.J. Robinson and J.R. Vane, pp. 19–31, Raven Press, New York.Google Scholar
  95. Smith, M.J.H., Ford-Hutchinson, A.W. and Bray, M.A. (1980): Leukotriene B: a potent mediator of inflammation. J. Pharm. Pharmac., 32: 517518.Google Scholar
  96. Smith, W.L. and Lands, W.E.M. (1971): Stimulation and blockade of the prostaglandin biosynthesis. J. Biol. Chem., 246: 6700–6704.Google Scholar
  97. Smith, E.F., Lefer, A.M. and Smith, J.B. (1980): Influence of thromboxane inhibition on the severity of myocardial ischaemia in cats. Can. J. Physiol., 58: 294–300.Google Scholar
  98. Smith, J.B. and Willis, A.L. (1971): Aspirin selectively inhibits prostaglandin production in human platelets. Nature (New Biol.), 231: 235–237.Google Scholar
  99. Sun, F.F., McGuire, J.C., Morton, D.R., Pike, J.E., Sprecher, H. and Kuman, W.H. (1981): Inhibition of platelet arachidonic acid 12lipoxygenase by acetylenic acid compounds. Prostaglandins, 21: 333–343.PubMedGoogle Scholar
  100. Tai, H-H. and Yuan, B. (1978): On the inhibitory potency of imidazole and its derivatives on thromboxane synthetase. Biochim. Biophys. Acta., 80: 236–242.Google Scholar
  101. Tam, S., Hong, S-C. and Levine, L. (1976): Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids. Proc. Nat. Acad. Sci. USA, 73: 1730–1734.Google Scholar
  102. Tashjian, A.H., Voelkel, E.F., McDonough, J. and Levine, L. (1975): Hydrocortisone inhibits prostaglandin production by mouse fibrosarcoma cells. Nature, 258: 739–741.PubMedCrossRefGoogle Scholar
  103. Thompson, E.B. and Lippman, M.E. (1974): Mechanism of action of glucocorticoids. Metabolism, 23: 159–202.PubMedCrossRefGoogle Scholar
  104. Tomlinson, R.V., Ringold, H.J., Qureshi, M.C., Forchielli, E. (1972): Relationship between inhibitors of prostaglandin synthesis and drug efficacy: support for the current theory on mode of action of aspirin-like drugs. Biochem. Biophys. Res. Commun., 46: 552–559.Google Scholar
  105. Tsurufuji, S., Sugio, K. and Takemasa, F. (1979): The role of glucocorticoid receptor and gene expression in the anti-inflammatory action of dexamethasone. Nature, 280: 408–410.PubMedCrossRefGoogle Scholar
  106. Turner, S.R., Tainer, J.A. and Lynn, W.S. (1975): Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. Nature, 257: 680–181.PubMedCrossRefGoogle Scholar
  107. Tyler, H.M., Saxton, C.A.P.D. and Parry, M.J. (1981): Administration to man of UK-37,248–01, a selective inhibitor of thromboxane synthetase. Lancet, 1: 629–632.PubMedCrossRefGoogle Scholar
  108. Vanderhoek, J.Y., Bryant, R.W. and Bailey, J.M. (1980a): 15-Hydroxy5,8,11,13-eicosatetraenoic acid. A potent and selective inhibitor of platelet lipoxygenase. J. Biol. Chem., 255: 5996–5998.Google Scholar
  109. Vanderhoek, J.Y., Bryant, R.W. and Bailey, J.M. (1980b): Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy5,8,11,13-eicosatetraenoic acid. J. Biol. Chem., 255: 10064–10066.Google Scholar
  110. Vane, J.R. (1971): Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature (New Biol.), 231: 232–235.Google Scholar
  111. Vane, J.R. (1976): The mode of action of aspirin and similar compounds. J. Allergy Clin. Immunol., 58: 691–712.Google Scholar
  112. Vargaftig, B.B. and Dao Hai, N. (1972): Selective inhibition by mepacrine of the release of rabbit aorta contracting substance evoked by the administration of bradykinin. J. Pharm. ( Lond. ), 24: 159–161.Google Scholar
  113. Vermylen, J., Defreyn, G., Carreras, L.O., Machin, S.J., von Schaeren, J. and Verstraete, M. (1981): Thromboxane synthetase inhibition as antithrombotic strategy. Lancet, 1: 1073–1075.PubMedCrossRefGoogle Scholar
  114. Vonkeman, H. and Van Dorp, D.A. (1968): The action of prostaglandin synthetase on 2-arachidonyl lecithin. Biochim. Biophys. Acta., 164: 430–432.Google Scholar
  115. Waite, M. and Sisson, P. (1972): Effect of local anaesthetics on phospholipases from mitochondria and lysosomes. A probe into the role of calcium ion in phospholipid hydrolysis. Biochemistry, 11: 3098–3105.Google Scholar
  116. Walenga, R., Vanderhoek, J.Y. and Feinstein, M.B. (1980): Serine esterase inhibitors block stimulus-induced mobilization of arachidonic acid and phosphatidylinsitide-specific phospholipase C activity in platelets. J. Biol. Chem., 255: 6024–6027.Google Scholar
  117. Walker, J.R. and Dawson, W. (1979): Inhibition of rabbit PMN lipoxygenase activity by benoxaprofen. J. Pharm. Pharmac., 31: 778–780.Google Scholar
  118. Wilhelm, J.E., Sankarappa, S.K., Van Rollins, M. and Sprecher, H. (1981): Selective inhibitors of platelet lipoxygenase: 4,7,10,13-icosatetraynoic acid and 5,8,11,14-henicosatetraynoic acid. Prostaglandins, 21: 323–332.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. A. Salmon
    • 1
  1. 1.Department of ProstaglandinResearch Wellcome Research LaboratoriesBeckenham, KentUK

Personalised recommendations