Advertisement

Mutational Specificity of UV Light in E. Coli: Influence of Excision Repair and the Mutator Plasmid PKM101

  • Barry Glickman
Part of the Basic Life Sciences book series (volume 15)

Abstract

The lacI system of E. coli provides a method for determining UV-induced mutational specificity at a large number of sites (1,2,3). In contrast, earlier studies in other systems have generally relied upon the analysis of reversion at a rather limited number of sites (4,5,6). Often, the mutants analyzed in reversion studies were originally induced by the mutagenic treatment (7) and the possibility therefore exists that preferentially mutable sites or hotspots were selected and that these may have behaved atypically. Alternatively, the original mutation may have removed a DNA sequence target and these sites may be in fact partially immutable! Moreover, in studies of the reversion of nonsense mutations, the majority of “revertants” actually occur not in the structural gene but at suppressor loci which behave unusually in their response to UV light (4,8,9). The lacI system allows the examination of forward mutagenesis at 65 individual sites where nonsense mutations can arise by a single base substitution. Since both the DNA sequence and the location of the nonsense mutations have been established (10), each mutation can be attributed to a specific transition or transversion event.

Keywords

Excision Repair Mutational Spectrum Suppressor Locus Cruciform Structure Potential Secondary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, J. H., Ganem, D., Lu, P., Schmitz, A.: Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: Construction of a colinear gene-protein map. J. Mol. Biol., 109: 275 (1977)PubMedCrossRefGoogle Scholar
  2. 2.
    Coulondre, C., Miller, J. H.: Genetic studies of the lac repressor. III. Additional correlation of mutational sites with specific amino acid residues. J. Mol. Biol., 117: 525 (1977)PubMedCrossRefGoogle Scholar
  3. 3.
    Coulondre, C., Miller, J. H.: Genetic studies of the lac repressor. IV. Mutagenic specificity of the lacI gene of Escherichia coli. J. Mol. Biol., 117: 577 (1977)PubMedCrossRefGoogle Scholar
  4. 4.
    Osborn, M., Person, S., Phillips, S., and Funk, F.: A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4. J. Mol. Biol., 26: 437 (1967)PubMedCrossRefGoogle Scholar
  5. 5.
    Person, S., and Osborn, M.: The conversion of amber suppressors to ochre suppressors. Biochem., 60: 1030 (1968)Google Scholar
  6. 6.
    Person, S., McCloskey, J. A., Snipes, W., and Bockrath, R. C.: Ultraviolet mutagenesis and its repair in an Escherichia coli strain containing a nonsense codon. Genetics, 78: 1035 (1974)PubMedGoogle Scholar
  7. 7.
    Yanofsky, C., Ito, J. and Horn, V. D.: Amino acid replacements and the genetic code. Cold Spring Harbor Symp. Quant. Biol., 31: 151 (1966)CrossRefGoogle Scholar
  8. 8.
    Bridges, B. A., Dennis, R. E. and Munson, R. J.: Mutation in E. coli B/r WP2 trp by reversion or suppression of a chain terminating codon. Mutation Res., 4: 502 (1967)PubMedCrossRefGoogle Scholar
  9. 9.
    Bridges, B. A., Dennis, R. E., and Munson, R. J.: Differential induction and repair of ultraviolet damage leading to true reversions and external suppressor mutations of an ochre codon in Escherichia coli B/r WP2. Genetics, 57: 892 (1967)Google Scholar
  10. 10.
    Miller, J. H., Coulondre, C., Farabaugh, P. J.: Correlation of nonsense sites in the lacI gene with specific codons in the nucleotide sequence. Nature (Lond.), 274: 770 (1978)CrossRefGoogle Scholar
  11. 11.
    Nishioka, H. and Doudney, C. O.: Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. Mutation Res., 8: 215 (1969)PubMedCrossRefGoogle Scholar
  12. 12.
    Jagger, J.: Ultraviolet inactivation of biological systems. In Photochemistry and Photobiology of Nucleic Acids, Ed. by S. Y. Wang. Academic Press, New York, Vol. II, p. 147 (1976)Google Scholar
  13. 13.
    Witkin, E. M.: Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev., 40: 869 (1976)PubMedGoogle Scholar
  14. 14.
    Defais, M., Fauquet, P., Radman, M. and Errera, M.: Ultraviolet reactivation and ultraviolet mutagenesis of X in different genetic systems. Virology, 43: 495 (1971)PubMedCrossRefGoogle Scholar
  15. 15.
    Radman, M.: Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In Molecular and Environmental Aspects of Mutagenesis, Ed. by L. Prakash, F. Sherman, M. W. Miller, C. M. Lawrence, and H. W. Taber. Thomas, Springfield, Ill., p. 128 (1974)Google Scholar
  16. 16.
    Radman, M.: SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In Molecular Mechanisms for Repair of DNA, Ed. by P. C. Hanawalt and R. B. Setlow. Plenum Press, New York, p. 355 (1975)CrossRefGoogle Scholar
  17. 17.
    Nishioka, H. and Doudney, C. O.: Different modes of loss of photoreversibility of ultraviolet light-induced true and suppressor mutations to tryptophan independence in an auxotrophic strain of Escherichia coli. Mutation Res., 9: 349 (1970)PubMedCrossRefGoogle Scholar
  18. 18.
    Bridges, B. A. and Mottershead, R. P.: Mutagenic DNA repair in Escherichia coli. VII. Constitutive and inducible manifestations. Mutation Res., 52: 151 (1978a)PubMedCrossRefGoogle Scholar
  19. 19.
    Green, M. H. L., Bridges, B. A., Eyfjord, J. E. and Muriel, W. J.: Mutagenic DNA repair in Escherichia coli. V. Mutation frequency decline and error-free post-replication repair in an excision-proficient strain. Mutation Research, 42: 33 (1977)PubMedCrossRefGoogle Scholar
  20. 20.
    Witkin, E. M.: Radiation induced mutations and their repair. Science, 152: 1345 (1966)PubMedCrossRefGoogle Scholar
  21. 21.
    Clarke, C. H.: Caffeine and amino acid effects upon try+ revertant yield in UV-irradiated hcr and hcr mutants of E. coli B/r. Mol. Gen. Genet., 99: 97 (1967)CrossRefGoogle Scholar
  22. 22.
    Clarke, C. H.: Mutation frequency decline and its relationship to excision repair. Stud. Biophys., 36 /37: 277 (1973)Google Scholar
  23. 23.
    Munson, R. J. and Bridges, B. A.: Non-photoreactivating repair of mutational lesions induced by ultraviolet and ionizing radiations in Escherichia coli. Mutation Res., 3: 461 (1966)CrossRefGoogle Scholar
  24. 24.
    Bockrath, R. C. and Palmer, J. E.: Differential repair of premutational UV-lesions at tRNA genes in E. coli. Molecular Gen. Genet., 156: 133 (1977)Google Scholar
  25. 25.
    Tweats, D. J., Thompson, M. L., Pinney, R. J., Smith, J. T.: R factor-mediated resistance to ultraviolet light in strains of Escherichia coli deficient in known repair functions. J. Gen. Microbiol., 93: 103 (1976)PubMedGoogle Scholar
  26. 26.
    Monti-Bragadin, C., Babudri, N., and Samer, L.: Expression of the 2lasmid pKM101-dtermined DNA repair system in recA and lex strains of Escherichia coli. Molec. gen. Genet., 145: 303 (1976)PubMedCrossRefGoogle Scholar
  27. 27.
    Walker, G. C.: Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: Dependence on chromosomal genes in Escherichia cola K12. Molec. gen. Genet., 152: 93 (1977)PubMedCrossRefGoogle Scholar
  28. 28.
    Waleh, N. S. and Stocker, B. A. D.: Effect of host lex, recA, recF and uvrD genotypes on the ultraviolet light-protecting and related properties of plasmid R46 in Escherichia coli. J. Bacteriol., 137: 830 (1979)PubMedGoogle Scholar
  29. 29.
    Mortelmans, K. E. and Stocker, B. A. D.: Ultraviolet light protection, enhancement of ultraviolet light mutagenesis, and mutator effect of plasmid R46 in Salmonella typhimurium. J. Bacteriol., 128: 271 (1976)PubMedGoogle Scholar
  30. 30.
    Mortelmans, K. E. and Stocker, B. A. D.: Segregation of the mutator property of plasmid R46 from its ultraviolet-protecting property. Molec. gen. Genet., 167: 317 (1979)PubMedCrossRefGoogle Scholar
  31. 31.
    Doubleday, O. P., Green, M. H. L. and Bridges, B. A.: Spontaneous and ultraviolet-induced mutation in Escherichia coli: Interaction between plasmid and tif-1 mutator effects. J. Gen. Microbiol., 101: 163 (1977)PubMedGoogle Scholar
  32. 32.
    Walker, G. C. and Dobson, P. P.: Mutagenesis and repair deficiencies of Escherichia coli umuC mutants are suppressed by the plasmid pKM101. Molec. gen. Genet., 172: 17 (1979)PubMedCrossRefGoogle Scholar
  33. 33.
    Glickman, B. W.: Spontaneous mutagenesis in Escherichia coli strains lacking 6-methyladenine residues in their DNA: An altered mutational spectrum in dam mutants. Mutat. Res., 61: 153 (1979)PubMedCrossRefGoogle Scholar
  34. 34.
    Cleary, P. P., Campbell, A. and Chang, R.: Location of promoter and operator sites in biotin gene cluster in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 69: 2219 (1972)PubMedCrossRefGoogle Scholar
  35. 35.
    Todd, P. A. and Glickman, B. W.: UV protection and mutagenesis in uvrD, uvrE and recL strains of Escherichia coli carrying the pKM1O1 plasmid. Mutat. Res., 62: 451 (1979)PubMedCrossRefGoogle Scholar
  36. 36.
    Glickman, B. W., Zwenk, H., van Sluis, C. A. and Rorsch, A.: Isolation and characterization of an X-ray sensitive UV resistant mutant of Escherichia coli K12. Biochim. Biophys. Acta, 254: 114 (1971)Google Scholar
  37. 37.
    Fowler, R. G., McGinty, L. and Mortelmans, K. E.: Spontaneous mutational specificity of drug resistance plasmid pKM1O1 in Escherichia coli. J. Bacteriol., 140: 929 (1979)PubMedGoogle Scholar
  38. 38.
    Miller, J. H.: Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1972)Google Scholar
  39. 39.
    Miller, J. H., Coulondre, C. and Farabaugh, P. J.: Molecular basis of base substitution hotspots in Escherichia coli. Nature, 274: 775 (1978)PubMedCrossRefGoogle Scholar
  40. 40.
    Lilley, D. M. J.: The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc. Natl. Acad. Sci., 77: 6488 (1980)CrossRefGoogle Scholar
  41. 41.
    Panayatos, N. and Wells, R. D.: Cruciform structures in supercoiled DNA. Nature, 289: 466 (1981)CrossRefGoogle Scholar
  42. 42.
    Gellert, M., Mizuchi, K., O’Dea, M. H., Ohmori, H. and Tomizawa, J.: DNA gyrase and DNA supercoiling. Cold Spr. Harb. Symp. Quant. Biol., 43: 35 (1978)CrossRefGoogle Scholar
  43. 43.
    Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbock, O. C., Crothers, D. M. and Gralla, J.: Improved estimation of secondary structure in ribonucleic acids. Nature New Biology, (1973)Google Scholar
  44. 44.
    Kimball, R. F.: The relation of repair phenomena to mutation induction in bacteria. Mut. Res., 55: 85 (1978)Google Scholar
  45. 45.
    Sedgwick, S. G.: Misrepair of overlapping daughter strand gaps as a possible mechnism for UV-induced mutagenesis in uvr strains of Escherichia coli. A general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions. Mutation Res., 41: 185 (1976)PubMedCrossRefGoogle Scholar
  46. 46.
    Farabaugh, P. J.: Sequence of the lacl gene. Nature, 274: 765 (1978)PubMedCrossRefGoogle Scholar
  47. 47.
    Drake, J. W.: Properties of ultraviolet-induced rII mutants of bacteriophage T4. J. Mol. Biol., 6: 268 (1963)CrossRefGoogle Scholar
  48. 48.
    Meistrich, M. L. and Drake, J. W.: Mutagenic effects of thymine dimers in bacteriophage T4. J. Mol. Biol., 66: 107 (1972)PubMedCrossRefGoogle Scholar
  49. 49.
    Prakash, L. and Sherman, F.: Mutagenic specificity: reversion of iso-l-cytochrome c mutants of yeast. J. Mol. Biol., 79: 65 (1973)PubMedCrossRefGoogle Scholar
  50. 50.
    Lawrence, C. W. and Christensen, R. B.: Absence of relationship between UV induced reversion frequency and nucleotide sequence at the cyc-1 locus of yeast. Molec. Gen. Genet., 177: 31 (1979)PubMedCrossRefGoogle Scholar
  51. 51.
    Wang, S. Y.: Photochemistry and photobiology of nucleic acids. Academic Press, New York, Vol. I (1976)Google Scholar
  52. 52.
    Todd, P. A., Brouwer, J. and Glickman, B. W.: Influence of DNA. Repair deficiencies on MMS and EMS induced mutagenesis. Mut. Res., (in press)Google Scholar
  53. 53.
    Schaaper, R. M. and Glickman, B. W.: Mutability of bacteriophage M13 by Ultraviolet Light: Role of pyrimidine dimers. (submitted)Google Scholar
  54. 54.
    Brandenburger, A., Godson, G. N., Radman, M., Glickman, B. W., van Sluis, C. A. and Doubleday, O. P.: Radiation-induced base substitution mutagenesis in single stranded DNA phage M13. Nature, (in press)Google Scholar
  55. 55.
    Doubleday, O. P., Brandenburger, A. and Radman, M.: This volumeGoogle Scholar
  56. 56.
    Haseltine, W. A., Gordon, L. K., Lindan, C. P., Grafstrom, R. H., Shaper, N. L. and Grossmon, L.: Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine DNA-glycosylase of M. luteus. Nature, 285: 634 (1980)PubMedCrossRefGoogle Scholar
  57. 57.
    Topal, M. D. and Fresco, J. R.: Complementary base pairing and the origin of substitution mutations. Nature (Lond.) 263: 285 (1976)CrossRefGoogle Scholar
  58. 58.
    Stewart, J. W. and Sherman, F.: Demonstration of UAG as a nonsense codon in Bakers’ yeast by amino acid replacements in Iso-l-cytochrome c. J. Mol. Biol., 68: 429 (1972)PubMedCrossRefGoogle Scholar
  59. 59.
    Coleman, R. D., Dunst, R. W. and Hill, C. W.: A double base change in alternate base pairs induced by ultraviolet irradiation in a glycine transfer RNA gene. Molec. Gen. Genet., 177: 213 (1980)PubMedCrossRefGoogle Scholar
  60. 60.
    Goze, A. and Devoret, R.: Repair promoted by plasmid pKM101 is different from SOS repair. Mutat. Res., 61: 163 (1979)PubMedCrossRefGoogle Scholar
  61. 61.
    Steinborn, G.: Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. Molec. Gen. Genet., 175: 203 (1979)PubMedCrossRefGoogle Scholar
  62. 62.
    Walker, G. C. and Dobson, P. P.: Mutagenesis and repair deficiencies of Escherichia coli umuC mutants are suppressed by the plasmid pKM101. Molec. Gen. Genet., 172: 17 (1979)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Barry Glickman
    • 1
  1. 1.Laboratory of Molecular GeneticsNational Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations