Replication and Mutagenesis of Irradiated Single-Strand Phage DNA

  • O. P. Doubleday
  • Ph. Lecomte
  • A. Brandenburger
  • W. P. Diver
  • M. Radman
Part of the Basic Life Sciences book series (volume 15)


Mutagens may be divided into two classes on the basis of the mechanism of their mutagenic action and the requirement for cellular repair genes for their mutagenic effect. Direct mutagens cause subtle modifications of the bases in DNA (or its precursors) and give rise to mutations by mispairing during DNA replication. Direct mutagens do not require cellular DNA repair activity for their mutagenic effect (i.e. act independently of the bacterial recA and lexA genes) and normally have a high degree of mutagenic specificity, reflecting the specificity of mispairing. Examples of direct mutagens are deaminating agents, such as hydroxylamine and bisulfite ; some base analogs, such as 2-aminopurine ; and alkylating agents, such as ethylmethane sulfonate. Indirect mutagens destroy the coding properties of DNA templates, thereby blocking DNA replication, and, unless repaired, are lethal. In situations where there is a redundancy in the DNA sequence information error-free repair processes may eliminate (e.g. by excision repair) or ‘tolerate’ (e.g. by postreplication recombinational exchanges) these lesions. However, when the mutagen destroys a unique piece of DNA sequence information, repair by error-free processes is no longer possible, and recA lexA-dependent error-prone repair is the only alternative to lethality. Such a situation may occur when a non-coding lesion is located within an overlapping excision gap (1), or in an overlapping gap in nascent DNA (2), or in a single-stranded genome (3). Examples of indirect mutagens are ultraviolet (UV) and ionizing radiation and many chemical mutagens and carcinogens, such as aflatoxin B1, benzo(a)pyrene, and mitomycin C.


Pyrimidine Dimer Cold Spring Harbor Symposium Apurinic Site Dime Site Indirect Mutagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bresler, S.E.: Theory of misrepair mutagenesis. Mutation Res., 29: 467–472 (1975)CrossRefGoogle Scholar
  2. 2.
    Sedgwick, S.G.: Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in UVR strains of Excheiichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions. Mutation Res., 41: 185–200 (1976)PubMedCrossRefGoogle Scholar
  3. 3.
    Caillet-Fauquet, P., Defais, M. and Radman, M.:Molecular mechanisms of induced mutagenesis. Replication in vivo of bacteriophage 0174 single-stranded, ultraviolet light-irradiated DNA in intact and irradiated host cells. J. M.l. Biol., 117: 95–112 (1977)CrossRefGoogle Scholar
  4. 4.
    Bridges, B.A. and Mottershead, R.P.: Mutagenic DNA repair in Escheiichia coli. VIII. Involvement of DNA polymerase III in constitutive and inducible mutagenic repair after ultraviolet and gamma irradiation. Molec. gen. Genet., 162: 35–41 (1978)PubMedCrossRefGoogle Scholar
  5. 5.
    Weigle, J.J.: Induction of mutations in a bacterial virus. Proc. Natl. Acad. Sci. USA 39: 628–636 (1953)PubMedCrossRefGoogle Scholar
  6. 6.
    Radman, M.: Phenomenology of an inducible mutagenic DNA repair pathway in Escheiichia coli: SOS repair hypothesis. In Molecular and Environmental Aspects of Mutagenesis, Ed. by L. Prakash, F. Sherman, M.W. Miller, C.W. Lawrence and H.W. Taber, C.C. Thomas Publ. Co., Springfield, Illinois, pp. 128–142 (1974)Google Scholar
  7. 7.
    Bleichrodt, J.F. and Verheij, W.S.D.: Mutagenesis by ultraviolet radiation in bacteriophage0l74:on the mutation stimulating processes induced by ultraviolet radiation in the host bacterium. Molec. gen. Genet., 135: 19–27 (1974)Google Scholar
  8. 8.
    Ichikawa-Ryo, H. and Kondo, S.: Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria. J. Mol. Biol., 97: 77–92 (1975)PubMedCrossRefGoogle Scholar
  9. 9.
    Witkin, E.M. and Wermundsen, I.E.: Targeted and untargeted muta- genesis by various inducers of SOS functions in Escheiichia coli. In DNA: Replication and Recombination, Cold Spring Harbor Symposium on Quantitative Biology, 43:881–886 (1979)CrossRefGoogle Scholar
  10. 10.
    Gottesman, S.: Genetic control of the SOS system in E.coli. Cell, 23: 1–2 (1981)PubMedCrossRefGoogle Scholar
  11. 11.
    Rahn, R.O. and Landry, L.C.: Ultraviolet irradiation of nucleic acids complexed with heavy atoms–II. Phosphorescence and photodimerization of DNA complexed with Ag. Photochem. Photobiol., 18: 29–38 (1973)PubMedCrossRefGoogle Scholar
  12. 12.
    Rahn, R.O., Setlow, J.K. and Landry, L.C.: Ultraviolet irradiation of nucleic acids complexed with heavy atoms–III. Influence of Ag+ and Hg2+ on the sensitivity of phage and of transforming DNA to ultraviolet radiation. Photochem. Photobiol., 18: 39–41 (1973)PubMedCrossRefGoogle Scholar
  13. 13.
    Rahn, R.O., Battista, M.D.C. and Landry, L.C.: Influence of mercuric ions on the phosphorescence and photochemistry of DNA. Proc. Natl. Acad. Sci. USA, 67: 1390–1397 (1970)PubMedCrossRefGoogle Scholar
  14. 14.
    Villani, G., Boiteux, S. and Radman, M.: Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vivo DNA synthesis on irradiated templates. Proc. Natl. Acad. Sci. USA, 75: 3037–3041 (1978)PubMedCrossRefGoogle Scholar
  15. 15.
    Defais, M., Caillet-Fauquet, P., Fox, M.S. and Radman, M.: Induction kinetics of mutagenic DNA repair activity in E.coli following ultraviolet irradiation. Molec. gen. Genet., 148: 125–130 (1976)Google Scholar
  16. 16.
    Guthrie, G.D. and Sinsheimer, R.L.: Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage 0X174. Biochim. Biophys. Acta, 72: 290–297 (1963)PubMedCrossRefGoogle Scholar
  17. 17.
    Hall, Z.W. and Lehman, I.R.: An in vivo transversion by a mutationally altered T4-induced DNA polymerase. J. Mol. Biol., 36: 321–333 (1968)PubMedCrossRefGoogle Scholar
  18. 18.
    Byrnes, J.J., Downey, K.M., Que, B.G., Lee, M.Y.W., Black, V.L. and So, A.G.: Selective inhibition of the 3’ to 5’ exonuclease activity associated with DNA polymerases: a mechanism of muta-genesis. Biochemistry, 16: 3740–3746 (1977)PubMedCrossRefGoogle Scholar
  19. 19.
    Doubleday, O.P., Michel-Maenhaut, G., Brandenburger, A., Lecomte, Ph. and Radman, M.: Inhibition or absence of DNA proofreading exonuclease is not sufficient to allow copying of pyrimidine dimers. In Chromosome Damage and Repair, Ed. by E. Seeberg and K. Kleppe, Plenum Pub. Corp., New York (in press)Google Scholar
  20. 20.
    Moore, P.D., Bose, K.K., Rabkin, S.D. and Strauss, B.S.: Sites of termination of in vivo DNA synthesis on ultraviolet-and N-acetylaminofluorene-treated 0X174 templates by prokaryotic and eukaryotic DNA polymerases. Proc. Natl. Acad. Sci. USA, 78: 110–114 (1981)PubMedCrossRefGoogle Scholar
  21. 21.
    Banks, G.R., Boezi, J.A. and Lehman, I.R.: A high molecular weight DNA polymerase from Diosophila melanogasten embryos. Purification, structure, and partial characterization. J. Biol. Chem., 254: 9886–9892 (1979)PubMedGoogle Scholar
  22. 22.
    Lindahl, T. and Nyberg, B.: Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11: 3610–3618 (1972)PubMedCrossRefGoogle Scholar
  23. 23.
    Conrad, S.E. and Campbell, J.L.: Characterization of an improved in vitio DNA replication system for Escheiichia coli plasmids. Nucleic Acids Res., 6: 3289–3303 (1979)PubMedCrossRefGoogle Scholar
  24. 24.
    Hershfield, M.S.: On the role of deoxyribonucleic acid polymerase in determining mutation rates. Characterization of the defect in the T4 deoxyribonucleic acid polymerase caused by the TS L88 mutation. J. Biol. Chem., 248: 1417–1423 (1973)PubMedGoogle Scholar
  25. 25.
    Reha-Krantz, L.J. and Bessman, M.J.: Studies on the biochemical basis of mutation. VI. Selection and characterization of a new bacteriophage T4 mutator DNA polymerase. J. Mol. Biol., 145: 677–695 (1981)PubMedCrossRefGoogle Scholar
  26. 26.
    Dube, D.K. and Loeb, L.A.: Manganese as a mutagenic agent during in v,Ww DNA synthesis. Biochem. Biophys. Res. Comm., 67: 1041–1046 (1975)PubMedCrossRefGoogle Scholar
  27. 27.
    Schaaper, R.M. and Loeb, L.A.: Depurination causes mutations in SOS-induced cells. Proc. Natl. Acad. Sci. USA, 78: 1773–1777 (1981)PubMedCrossRefGoogle Scholar
  28. 28.
    Olsson, M. and Lindahl, T.: Repair of alkylated DNA in EacheAichia coté.: methyl group transfer from 06-methylguanine to a protein cysteine residue. J. Biol. Chem., 255: 10569–10571 (1980)PubMedGoogle Scholar
  29. 29.
    Bridges, B.A., Mottershead, R.P. and Sedgwick, S.G.: Mutagenic DNA repair in E4chet chia cote. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. Molec. gen. Genet., 144: 53–58 (1976)Google Scholar
  30. 30.
    Fields, P.I. and Yasbin, R.E.: Involvement of deoxyribonucleic acid polymerase III in W-reactivation in Bacee,2u-lu tiZiz. J. Bacteriology, 144: 473–475 (1980)Google Scholar
  31. 31.
    Van Wezenbeek, P.M.G.F., Hulsebos, T.J.M. and Schoenmakers, J.G.G.: Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene, 11: 129–148 (1980)PubMedCrossRefGoogle Scholar
  32. 32.
    Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H. and Roe, B.A.: Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol., 143: 161–178 (1980)PubMedCrossRefGoogle Scholar
  33. 33.
    Sanger, F., Nicklen, S. and Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci.USA, 74: 5463–5467 (1977)PubMedCrossRefGoogle Scholar
  34. 34.
    Bleichrodt, J.F. and Roos-Verheij, W.S.D.: Influence of SOS repair on the specificity of radiation mutagenesis in bacteriophage 0X174. Molec. gen. Genet., 176: 155–160 (1979)Google Scholar
  35. 35.
    Glickman, B.W., Rietveld, K. and Aaron, C.S.: Y-ray induced mutational spectrum in the.2ac1 gene of Escheiichia coli. Comparison of induced and spontaneous spectra at the molecular level. Mutation Res., 69: 1–12 (1980)PubMedCrossRefGoogle Scholar
  36. 36.
    Yatagai, F., Kitayama, S. and Matsuyama, A.: Weigle reactivation and Weigle mutagenesis in phage 0X174 by various types of radiation. Mutation Res., 91: 3–7 (1981)PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, M., Brown, N.L., Air, G.M., Barrell, B.G., Coulson, A.R., Hutchison III, C.A. and Sanger, F.: DNA sequence at the C termini of the overlapping genes A and B in bacteriophage 0X174. Nature, 265: 702–705 (1977)PubMedCrossRefGoogle Scholar
  38. 38.
    Witkin, E.M.: Ultraviolet mutagenesis and inducible DNA repair in Escheiichia coli. Bacteriological Rev., 40: 869–907 (1976)Google Scholar
  39. 39.
    Coulondre, C. and Miller, J.H.: Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene of Escheiichia coli. J. Mol. Biol., 117: 577–606 (1977)PubMedCrossRefGoogle Scholar
  40. 40.
    Coleman, R.D., Dunst, R.W. and Hill, C.W.: A double base change in alternate base pairs induced by ultraviolet irradiation in a glycine transfer RNA gene. Molec. gen. Genet., 177: 213–222 (1980)Google Scholar
  41. 41.
    Kubitschek, H.E.: Double mutations induced in Escheiichia coli. by ultraviolet light. J. Bacteriology, 142: 724–725 (1980)Google Scholar
  42. 42.
    Radman, M., Villani, G., Boiteux, S., Kinsella, A.R., Glickman, B.W. and Spadari, S.: Replicational fidelity: mechanisms of mutation avoidance and mutation fixation. In DNA: Replication and Recombination, Cold Spring Harbor Symposium on Quantitative Biology, 43:937–946 (1979)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • O. P. Doubleday
    • 1
  • Ph. Lecomte
    • 1
  • A. Brandenburger
    • 1
  • W. P. Diver
    • 1
  • M. Radman
    • 1
  1. 1.Département de Biologie Moléculaire, Laboratoire de Biophysique et RadiobiologieUniversité Libre de BruxellesRhode-St-GenèseBelgium

Personalised recommendations