The Specificity of Infidelity of DNA Polymerase

  • Lynn S. Ripley
Part of the Basic Life Sciences book series (volume 15)


A complex network of metabolic processes is responsible for the accurate production of progeny DNA. The infidelity of these processes when measured as mutations per base pair in DNA varies dramatically among organisms (1) and seems likely to reflect unique combinations of fidelity determinants. Unfortunately, it is nearly impossible to measure fidelity directly, but instead it is the summation of accurate and inaccurate processes producing a mutation frequency which can be experimentally determined.


Mutation Frequency Frameshift Mutation Base Pair Substitution Antimutator Effect Normal Fidelity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drake, J. W.: Comparative rates of spontaneous mutation. Nature, 221: 1132 (1969)PubMedCrossRefGoogle Scholar
  2. 2.
    Wood, W. B. and Revel, H. R.: The genome of bacteriophage T4. Bacteriol. Rev., 40: 847 (1976)PubMedGoogle Scholar
  3. 3.
    Barry, J. and Alberts, B.: In vitro complementation as an assay for new proteins required for bacteriophage T4 DNA replication: Purification of the complex specified by T4 genes 44 and 62. Proc. Natl. Acad. Sci. (U.S.A.), 69: 39 (1972)CrossRefGoogle Scholar
  4. 4.
    Liu, C. C., Burke, R. L., Hibner, U., Barry, J. and Alberts, B. M.: Probing DNA replication mechanisms with the T4 bacteriophage in vitro system. Cold Spring Harbor Symp. Quant. Biol., 43: 469 (1979)CrossRefGoogle Scholar
  5. 5.
    Huberman, J. A., Kornberg, A. and Alberts, B. M.: Stimulation of T4 bacteriophage DNA polymerase by the protein product of T4 gene 32. J. Mol. Biol., 62: 39 (1971)PubMedCrossRefGoogle Scholar
  6. 6.
    Burke, R. L., Alberts, B. M. and Hosoda, J.: Proteolytic removal of the COOH terminus of the T4 gene 32 helix-destabilizing protein alters the T4 in vitro replication complex. J. Biol. Chem., 255: 11484 (1980)PubMedGoogle Scholar
  7. 7.
    Bernstein, H.: Repair and recombination in phage T4. I. Genes affecting recombination. Cold Spring Harbor Symp. Quant. Biol., 33: 325 (1968)PubMedCrossRefGoogle Scholar
  8. 8.
    Broker, T. R. and Lehman, I. R.: Branched DNA molecules: Intermediates in T4 recombination. J. Mol. Biol., 60: 131 (1971)PubMedCrossRefGoogle Scholar
  9. 9.
    Harm, W.: On the control of UV-sensitivity of phage T4 by the gene x. Mutation Res., 1: 344 (1964)CrossRefGoogle Scholar
  10. 10.
    Maynard-Smith, S. and Symonds, N.: Involvement of bacteriophage T4 genes in radiation repair. J. Mol. Biol., 74: 33 (1973)PubMedCrossRefGoogle Scholar
  11. 11.
    Mosig, G., Luder, A., Garcia, G., Dannenberg, R. and Bock, S.: In vivo interactions of genes and proteins in DNA replication and recombination of phage T4. Cold Spring Harbor Symp. Quant. Biol., 43: 501 (1979)CrossRefGoogle Scholar
  12. 12.
    Streisinger, G., Emrich, J. and Stahl, M. M.: Chromosome structure in phage T4, III. Terminal redundancy and length determination. Proc. Natl. Acad. Sci. (U.S.A.), 57: 292 (1967)CrossRefGoogle Scholar
  13. 13.
    Speyer, J. F. and Rosenberg, D.: The function of T4 DNA polymerase. Cold Spring Harbor Symp. Quant. Biol., 33: 345 (1968)CrossRefGoogle Scholar
  14. 14.
    Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R. S., Susman, M., Denhardt, G. H., and Lielausis, A.: Physiological studies of conditonal lethal mutants of bacteriophage T4D. Cold Spring Harbor Symp. Quant. Biol., 28: 375 (1963)CrossRefGoogle Scholar
  15. 15.
    Speyer, J. F., Karam, J. D. and Lenny, A. B.: On the role of DNA polymerase in base selection. Cold Spring Harbor Symp. Quant. Biol., 31: 693 (1966)CrossRefGoogle Scholar
  16. 16.
    Drake, J. W., Allen, E. F., Forsberg, S. A., Preparata, R. and Greening, E. O.: Genetic control of mutation rates in bacteriophage T4. Nature, 221: 1128 (1969)PubMedCrossRefGoogle Scholar
  17. 17.
    Ripley, L. S.: Influence of diverse gene 43 DNA polymerases on the insertion and replication in vivo of 2-aminopurine at A•T base-pairs in bacteriophage T4. J. Mol. Biol. (in Press) (1981)Google Scholar
  18. 18.
    Bernstein, H.: Reversion of frameshift mutations stimutated by lesions in early function genes of bacteriophage T4. J. Virol., 7: 460 (1971)PubMedGoogle Scholar
  19. 19.
    Chiu, C. and Greenberg, G. R.: Mutagenic effect of temperature-sensitive mutants of gene 42 (dCMP hydroxymethylase) of bacteriophage T4. J. Virol., 12: 199 (1973)PubMedGoogle Scholar
  20. 20.
    Koch, R. E. and Drake, J. W.: Ligase-defective bacteriophage T4 I. Effects on mutation rates. J. Virol., 11: 35 (1973)PubMedGoogle Scholar
  21. 21.
    Koch, R. E., McGaw, M. K. and Drake, J. W.: Mutator mutations in bacteriophage T4 gene 32 (DNA unwinding protein). J. Virol., 19: 490 (1976)PubMedGoogle Scholar
  22. 22.
    Williams, W. E. and Drake, J. W. Mutator mutations in bacteriophage T4 gene 42 (dHMC hydroxymethylase). Genetics, 86: 501 (1977)PubMedGoogle Scholar
  23. 23.
    Watanabe, S. M. and Goodman, M. F.: Mutator and antimutator phenotypes of suppressed amber mutants in genes 32, 41, 44, 45 and 62 in bacteriophage T4. J. Virol., 25: 73 (1978)PubMedGoogle Scholar
  24. 24.
    Alberts, B. M. and Frey, L.: T4 bacteriophage gene 32: A structural protein in the replication and recombination of DNA. Nature, 227: 1313 (1970)PubMedCrossRefGoogle Scholar
  25. 25.
    Nossal, N. G.: DNA synthesis on a double-stranded DNA template by the T4 bacteriophage DNA polymerase and the T4 gene 32 DNA unwinding protein. J. Biol. Chem., 249: 5668 (1974)PubMedGoogle Scholar
  26. 26.
    Speyer, J. F.: Mutagenic DNA polymerase, Biochem. Biophys. Res. Commun., 21: 6 (1965)CrossRefGoogle Scholar
  27. 27.
    Ripley, L. S.: Transversion mutagenesis in bacteriophage T4. Molec. Gen. Genet., 141: 23 (1975)PubMedCrossRefGoogle Scholar
  28. 28.
    de Vries, F. A. J., Swart-Idenburg, Ch. J. H. and de Waard, A.: An analysis of replication errors made by a defective T4 DNA polymerase. Molec. Gen. Genet., 117: 60 (1972)PubMedCrossRefGoogle Scholar
  29. 29.
    Muzyczka, N., Poland, R. L. and Bessman, M. J.: Studies on the biochemical basis of spontaneous mutation I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J. Biol. Chem., 247: 7116 (1972)PubMedGoogle Scholar
  30. 30.
    Brutlag, D. and Kornberg, A.: Enzymatic synthesis of deoxyribonucleic acid. XXXVI A proofreading function for the 3’-5’ exonuclease activity in deoxyribonucleic acid polymerases. J. Biol. Chem., 247: 241 (1972)PubMedGoogle Scholar
  31. 31.
    Gillin, F. D. and Nossal, N. G.: Control of mutation frequency by bacteriophage T4 DNA polymerase I. The CB120 antimutator DNA polymerase is defective in strand displacement. J. Biol. Chem., 251: 5219 (1976)PubMedGoogle Scholar
  32. 32.
    Gillin, F. D. and Nossal, N. G.: Control of mutation frequency by bacteriophage T4 DNA polymerase II. Accuracy of nucleotide selection by the L88 mutator, CB120 antimutator, and wild type phage T4 DNA polymerases. J. Biol. Chem., 251: 5225 (1976)PubMedGoogle Scholar
  33. 33.
    Lo, K. and Bessman, M. J.: An antimutator deoxyribonucleic acid polymerase I. Purification and properties of the enzyme. J. Biol. Chem., 251: 2475 (1976)PubMedGoogle Scholar
  34. 34.
    Hershfield, M. S.: On the role of deoxyribonucleic acid polymerase in determining mutation rates. Characterization of the defect in the T4 deoxyribonucleic acid polymerase caused by the tsL88 mutation. J. Biol. Chem., 248: 1417 (1973)PubMedGoogle Scholar
  35. 35.
    Hopfield, J. J.: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. (U.S.A.), 71: 4135 (1974)CrossRefGoogle Scholar
  36. 36.
    Topai, M. D. and Fresco, J. R.: Complementary base pairing and the origin of substitution mutations. Nature, 263: 285 (1976)CrossRefGoogle Scholar
  37. 37.
    Smith, M. D., Green, R. R., Ripley, L. S. and Drake, J. W.: Thymineless mutagenesis in bacteriophage T4. Genetics, 74: 393 (1973)PubMedGoogle Scholar
  38. 38.
    Drake, J. W. and Greening, E. O.: Suppression of chemical mutagenesis in bacteriophage T4 by genetically modified DNA polymerases. Proc. Natl. Acad. Sci. (U.S.A.), 66: 823 (1970)CrossRefGoogle Scholar
  39. 39.
    Hibner, U. and Alberts, B. M.: Fidelity of DNA replication catalysed in vitro on a natural DNA template by the T4 bacteriophage multi-enzyme complex. Nature, 285: 300 (1980)PubMedCrossRefGoogle Scholar
  40. 40.
    Sinha, N. K. and Haimes, M. D.: Molecular mechanisms of substitution mutagenesis. An experimental test of the Watson-Crick and Topal-Fresco models of base mispairings. J. Biol. Chem., (in Press) (1981)Google Scholar
  41. 41.
    Reddy, G. P. V. and Mathews, C. K.: Functional compartmentation of DNA precursors in T4 phage-infected bacteria. J. Biol. Chem., 253: 3461 (1978)PubMedGoogle Scholar
  42. 42.
    Fersht, A. R.: Fidelity of replication of phage 0X174 DNA by DNA polymerase III holoenzyme: Spontaneous mutation by misincorporation. Proc. Natl. Acad. Sci. (U.S.A.), 76: 4946 (1979)CrossRefGoogle Scholar
  43. 43.
    Clayton, L. K., Goodman, M. F., Branscomb, E. W. and Galas, D. J.: Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. J. Biol. Chem., 254: 1902 (1979)PubMedGoogle Scholar
  44. 44.
    Bernardi, F. and Ninio, J.: The accuracy of DNA replication. Biochimie, 60: 1083 (1978)PubMedCrossRefGoogle Scholar
  45. 45.
    Goodman, M. F., Hopkins, R. and Gore, W. C.: 2-Aminopurineinduced mutagenesis in T4 bacteriophage: A model relating mutation frequency to 2-aminopurine incorporation in DNA. Proc. Natl. Acad. Sci. (U.S.A.), 74: 4806 (1977)CrossRefGoogle Scholar
  46. 46.
    Ronen, A., Halevy, C. and Kass, N.: Site specificity and variability in the mutator and antimutator effects of phage T4 gene 43 mutants. Genetics., 90: 647 (1978)Google Scholar
  47. 47.
    Englund, P. T., Huberman, J. A., Jovin, T. M. and Kornberg, A.: Enzymatic synthesis of deoxyribonucleic acid. XXX Binding of triphosphates to deoxyribonucleic acid polymerase. J. Biol. Chem., 244: 3038 (1969)PubMedGoogle Scholar
  48. 48.
    Topal, M. D., DiGuiseppi, S. R. and Sinha, N. K.: Molecular basis for substitution mutations. Effect of primer terminal and template residues on nucleotide selection by phage T4 DNA polymerase in vitro. J. Biol. Chem., 255: 11717 (1980)PubMedGoogle Scholar
  49. 49.
    Koch, R. E.: The influence of neighboring base pairs upon base-pair substitution mutation rates. Proc. Natl. Acad. Sci. (U.S.A.), 68: 773 (1971)CrossRefGoogle Scholar
  50. 50.
    Ripley, L. S. and Shoemaker, N. B.: Polymerase infidelity and frameshift mutation. In Molecular and Cellular Mechanisms of Mutagenesis, Ed. by J. F. Lemontt and W. M. Generoso. Plenum Press, New York (1981)Google Scholar
  51. 51.
    Benzer, S.: On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. (U.S.A.), 47: 403 (1961)CrossRefGoogle Scholar
  52. 52.
    Pribnow, D., Sigurdson, D. C., Gold, L., Singer, B. S., Brosius, J., Dull, T. J., and Noller, H. F.: The rII cistrons of bacteriophage T4: DNA sequence around the intercistronic divide and positions of genetic landmarks. J. Mol. Biol., (in Press) (1981)Google Scholar
  53. 53.
    Barnett, L., Brenner, S., Crick, F. H. C., Shulman, R. G. and Watts-Tobin, R. J.: Phase-shift and other mutants in the first part of the rIIB cistron of bacteriophage T4. Philosoph. Trans. Royal Soc. London, Ser. B, 252: 487 (1967)CrossRefGoogle Scholar
  54. 54.
    Strigini, P.: On the mechanism of spontaneous reversion and genetic recombination in bacteriophage T4. Genetics, 52: 759 (1965)PubMedGoogle Scholar
  55. 55.
    Drake, J. W. and Allen, E. F.: Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harbor Symp. Quant. Biol. 33: 339 (1968)CrossRefGoogle Scholar
  56. 56.
    Lindstrom, D. M. and Drake, J. W.: Mechanics of frameshift mutagenesis in bacteriophage T4: Role of chromosome tips. Proc. Natl. Acad. Sci. (U.S.A.), 65: 617 (1970)CrossRefGoogle Scholar
  57. 57.
    Allen, E. F., Albreght, I. and Drake, J. W.: Properties of bacteriophage T4 mutants defective in DNA polymerase. Genetics, 65: 187 (1970)PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Lynn S. Ripley
    • 1
  1. 1.Laboratory of Molecular GeneticsNational Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations