Genetic Effects of Bisulfite: Implications for Environmental Protection

  • Robert Shapiro
Part of the Basic Life Sciences book series (volume 15)


Sulfur dioxide is unique among environmental substances because of the many routes of human exposure to it. Combustion of coal and oil releases SO2 into urban atmospheres. It is added to foods, beverages, and pharmaceuticals and we produce it within our bodies as a product of the catabolism of sulfur containing amino acids. It is short-lived within us, as it is rapidly oxidized to sulfate by sulfite oxidase.


Sulfur Dioxide Acid Rain Sodium Bisulfite Cytosine Residue Sulfite Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shapiro, R.: Genetic effects of bisulfite. Mutation Res., 39: 149 (1977)PubMedGoogle Scholar
  2. 2.
    Gunnison, A.F.: Sulfite toxicity: A critical review of in vitro and in vivo data. Food Cosmet. Toxicol., in press (1981)Google Scholar
  3. 3.
    American Chemical Society: Cleaning Our Environment, A Chemical Perspective, Washington, D.C., (1978)Google Scholar
  4. 4.
    Newell, V.A., Wyzga, R.E., and McCarroll, J.R.: Costs versus benefits of sulfur oxides and related particulate matter control. Bull. N.Y. Acad. Med., 54: 1211 (1978)Google Scholar
  5. 5.
    Carter, L.J.: Uncontrolled SO2 emissions bring acid rain. Science, 204: 1179 (1979)PubMedCrossRefGoogle Scholar
  6. 6.
    Lave, L.B.: Health benefits of abating air pollution. Bull. N.Y. Acad. Med., 54: 1235 (1978)PubMedGoogle Scholar
  7. 7.
    Committee on Sulfur Oxides, National Research Council: Sulfur Oxides. National Academy of Sciences, Washington, D.C. (1978)Google Scholar
  8. 8.
    Ellison, J.M. and Waller, R.E.: A review of sulphur oxides and particulate matter as air pollutants with particular reference to effects on health in the United Kingdom. Environ. Res., 16: 302 (1978)PubMedCrossRefGoogle Scholar
  9. 9.
    Schimmel, H.: Evidence for possible acute health effects of ambient air pollution from time series analysis: methodological questions and some new results based on New York City daily mortality, 1963–1976. Bull. N.Y. Acad. Med., 54: 1052 (1978)PubMedGoogle Scholar
  10. 10.
    Hickey, R.J., Clelland, R.C., Bowers, E.J. and Boyce, D.E.: Health effects of atmospheric sulfur dioxide and dietary sulfates. Arch.Environ. Health 31: 108 (1976)PubMedGoogle Scholar
  11. 11.
    Ferris, B.G.: Health effects of exposure to low levels of regulated air pollutants. J. Air Poll. Control Assoc., 28: 482 (1978)CrossRefGoogle Scholar
  12. 12.
    Kassell, E.J.: Towards an optimum environment. In Environmental Factors in ResRiratory Disease, Ed. by D.H.K. Lee. Academic Press, New York, p 237(1972)Google Scholar
  13. 13.
    Chichester, D.F., and Tanner, Jr. F.W.: Antimicrobial food additives. In Handbook of Food Additives 2nd ed., Ed. by T.E. Furia. CRC Press, Cleveland, p 115(1972)Google Scholar
  14. 14.
    Shapiro, R., Robakis, N.K. and Rossman, T.: Inhibition of growth and macromolecular synthesis in E. coli by bisulfite. Fed. Proc., 40: 1621 (1981)Google Scholar
  15. 15.
    De Felice, M., Levinthal, M., Iaccarino, M., and Guardiola, J.: Growth inhibition as a consequence of antagonism between related amino acids: Effect of valine in Escherichia coli K12. Microbiol Rev., 43: 42 (1979)PubMedGoogle Scholar
  16. 16.
    Harris, C.L.: Cysteine and growth inhibition of Escherichia coli: Threonine deaminase as the target enzyme. J. Bacterial., 145: 1031 (1981)Google Scholar
  17. 17.
    Institute of Food Technologists Expert Panel on Food Safety and Nutrition and the Committee on Public Information: Sulfites as food additives. Food Technol., 29: 117 (1975)Google Scholar
  18. 18.
    Life Science Research Office, Federation of American Societies for Experimental Biology: Evaluation of the Health Effects of of Sulfiting Agents as Food Ingredients. Bethesda, Maryland (1976)Google Scholar
  19. 19.
    Southerland, W.M., Winge, D.R. and Rajagopalan, K.V.: The domains of rat liver sulfite oxidase. J. Biol. Chem., 253: 8747 (1978)PubMedGoogle Scholar
  20. 20.
    Gunnison, A.F., Zaccardi, J., Dulak, L. and Chiang, G.: Tissue distribution of S-sulfonate metabolites following exposure to sulfur dioxide. Environ. Res., in press (1981)Google Scholar
  21. 21.
    Gunnison, A.F., Bresnahan, C.A. and Palmes, E.D.: Comparitive sulfite metabolism in the rat, rabbit, and rhesus monkey. Toxicol. Appl. Pharmacol., 42: 99 (1977)PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson, J.L., Rajagopalan, K.V. and Cohen, H.J.: Molecular basis of the biological function of molybdenum. Effect of tungsten on xanthine oxidase and sulfite oxidase in the rat. J. Biol Chem., 249: 859 (1974)PubMedGoogle Scholar
  23. 23.
    Gunnison, A.F., Farruggella, T.J., Chiang, G., Dulak, L. and Birkner, J.: A sulphite oxidase-deficient rat model: metabolic characterization. Fd. Cosmet. Toxicol., in press(1981)Google Scholar
  24. 24.
    Johnson, J.L., Wand, W.R., Rajagopolan, K.V., Duran, M., Beemer, F.A. and Wadman, S.K.: Inborn errors of molybdenum metabolism: Combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Proc. Natl. Acad. Sci. USA, 77: 3715 (1980)PubMedCrossRefGoogle Scholar
  25. 25.
    Shapiro, R., Servis, R.E., and Welcher, M.: Reaction of uracil and cytosine derivatives with sodium bisulfite. A specific deamination method. J. Amer. Chem. Soc., 92: 422 (1970)CrossRefGoogle Scholar
  26. 26.
    Hayatsu, H., Wataya, Y. Kai, K. and Iida, S.: Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry, 9: 2858 (1970)PubMedCrossRefGoogle Scholar
  27. 27.
    Shapiro, R., Braverman, B., Louis, J.B. and Servis, R.E.: Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J. Biol Chem., 248: 4060 (1973)PubMedGoogle Scholar
  28. 28.
    Shapiro, R., Cohen, B.I. and Servis, R.I.: Specific deamination of RNA by sodium bisulfite. Nature, 227: 1047 (1970)PubMedCrossRefGoogle Scholar
  29. 29.
    Hayatsu, H.: Bis;ulfite modification of nucleic acids and their constituents. Progr. Nucleic Acid. Res. Mol. Biol., 16: 75 (1976)CrossRefGoogle Scholar
  30. 30.
    Shortle, D. and Nathans, D.: Local mutagenesis: A method for generating viral mutants with base substitutions in pre-selected regions of the viral genome. Proc. Natl. Acad. Sci. USA, 75: 2170 (1978)PubMedCrossRefGoogle Scholar
  31. 31.
    Mukai, F., Hawryluk, I., and Shapiro, R.: The mutagenic specificity of sodium bisulfite. Biochem. Biophys. Res. Commun., 39: 983 (1970)PubMedCrossRefGoogle Scholar
  32. 32.
    Shapiro, R. and Klein, R.S.: The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry 5: 2358 (1966)PubMedCrossRefGoogle Scholar
  33. 33.
    Shapiro, R., DiFate, V. and Welcher, M.: Deamination of cytosine derivatives by bisulfite. Mechanism of the reaction. J. Amer. Chem. Soc. 96: 906 (1974)CrossRefGoogle Scholar
  34. 34.
    Shapiro, R.: Damage to DNA caused by hydrolysis. In Chromosome Damage and Repair, Ed. by E. Seeberg and K. Kleppe. Plenum Press, New York, in press(1981)Google Scholar
  35. 35.
    Slae, S. and Shapiro, R.: Kinetics and mechanism of the deamination of 1-methyl-5,6-dihydrocytosinu. J. Ors. Chem. 43: 1721 (1978)CrossRefGoogle Scholar
  36. 36.
    Pitman, I.H. and Jain, N.B.: The covalent addition of bisulfite ion to N-alkylated uracils and thiouracils. Aust. J. Chem., 32: 545 (1979)CrossRefGoogle Scholar
  37. 37.
    Shapiro, R., Welcher, M., Nelson, V. and DiFate, V.: Reaction of uracil and thymine derivatives with sodium bisulfite. Studies on the mechanism and reduction of the adduct. Biochim. Biophys. Acta, 425: 115 (1976)PubMedGoogle Scholar
  38. 38.
    Garrett, E.R. and Tsau, J.: Solvolyses of cytosine and cytidine. J. Pharm. Sci., 61: 1052 (1972)PubMedCrossRefGoogle Scholar
  39. 39.
    Lindahl, T. and Nyberg, B.: Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry, 13: 3405 (1974)PubMedCrossRefGoogle Scholar
  40. 40.
    Baltz, R.H., Bingham, P.M. and Drake, J.W.: Heat mutagenesis in bacteriophage T4: The transition pathway. Proc. Nat. Acad. Sci. USA, 73: 1269 (1976)PubMedCrossRefGoogle Scholar
  41. 41.
    Lindahl, T.: DNA glycosylases, endonucleases for apurinic/ apyrimidinic sites, and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol., 22: 135 (1979)PubMedCrossRefGoogle Scholar
  42. 42.
    Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. and Sperens, B.: DNA-N-glycosidases; properties of uracil-DNA glycosidase from Escherichia coli. J. Biol Chem., 252: 3286 (1977)PubMedGoogle Scholar
  43. 43.
    Coulondre, C., Miller, J.H., Farabaugh, P.J. and Gilbert, W.: Molecular basis of base substitution hotspots in Escherichia coli. Nature, 274: 775 (1978)PubMedCrossRefGoogle Scholar
  44. 44.
    Duncan, B.K. and Miller, J.H.: Mutagenic deamination of cytosine residues in DNA. Nature, 287: 560 (1980)PubMedCrossRefGoogle Scholar
  45. 45.
    Moller, M. and Shapiro, R.: unpublished resultsGoogle Scholar
  46. 46.
    Hayakawa, H. Kumara, K. and Sekiguchi, M.: Role of uracil-DNA glycosylase in the repair of deaminated cytosine residues of DNA in Escherichia coli. J. Biochem.(Tokyo) 84: 1155 (1978)Google Scholar
  47. 47.
    Simmons, R.R. and Friedberg, E.C.: Enzymatic degradation of uracil-containing deoxyribonucleic acid. V. Survival of Escherichia coli and coliphages treated with sodium bisulfite. J. Bacteriol. 137: 1243 (1980)Google Scholar
  48. 48.
    Wang, R.Y-H, Gehrke, C.W and Ehrlich, M.: Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res., 8: 4777 (1980)PubMedCrossRefGoogle Scholar
  49. 49.
    Shapiro, R., Slae, and Crane, L.E.: unpublished resultsGoogle Scholar
  50. 50.
    Shirigami, M., Kudo, I, Lida, S. and Hayatsu, H.: Formation of diastereomers of 5,6-dihydrothymine-6-sulfonate by deamination of 5-methylcytosine with bisulfite. Chem. Pharm. Bull. 23: 302 (1975)Google Scholar
  51. 51.
    Slae, S. and Shapiro, R.: Deamination of bytidine by bisulfite: mechanism at neutral pH. J. Org. Chem., 43: 4197 (1978)CrossRefGoogle Scholar
  52. 52.
    Duncan, B.K.: personal communicationGoogle Scholar
  53. 53.
    Mallon, R.G. and Rossman, T.G.: Bisulfite (sulfur dioxide) is a comutagen inE. coli and in Chinese hamster cells. Mutation Res., 88: 125 (1981)PubMedCrossRefGoogle Scholar
  54. 54.
    Kak, S.N. and Kaul, B.L.: Mutagenic activity of sodium bisulphite in barley. Experentia, 35: 739 (1979)CrossRefGoogle Scholar
  55. 55.
    Schneider, L.K. and Calkins, C.A.: Sulfur dioxide-induced lymphocyte defects in human peripheral blood cultures, Environ. Res., 3: 473 (1971)CrossRefGoogle Scholar
  56. 56.
    Jagiello, G.M., Lin, J.S. and Ducayen, M.B.: SO2 and its metabolite: effects on mammalian egg chromosomes. Environ. Res., 9: 84 (1975)PubMedCrossRefGoogle Scholar
  57. 57.
    Generoso, W.M., Huff, S.W. and Cain, K.T.: Tests on induction of chromosome aberrations in mouse germ cells with sodium bisulfite. Mutation Res., 56: 363 (1978)PubMedCrossRefGoogle Scholar
  58. 58.
    Russell, W.L. and Kelly, E.M.: Results from a specific-locus test of the mutagenecity of sulfur dioxide in mice. In Annual Progress Report for period ending June 30, 1975. Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, p 119(1975)Google Scholar
  59. 59.
    Tanaka, T., Fujii, M., Mori, H. and Hirono, I.: Carcinogenicity test of potassium metalisulfite in mice. Ecotoxicol and Envrnm. Safety, 3: 451 (1979)CrossRefGoogle Scholar
  60. 60.
    Rossman, T.:personal communicationGoogle Scholar
  61. 61.
    Laskin, S., Kuschaer, M., Kellakumar, A. and Katz, G.V.: Combined carcinogen-irritant animal inhalation studies. In Air Pollution and the Lung, Ed. by E.F. Aharonson, A. Ben-David and M.A. Klingberg, John Wiley and Sons, New York, p 190(1976)Google Scholar
  62. 62.
    Shapiro, R. and Weisgras, J.M.: Bisulfite-catalyzed transamination of cytosine and cytidine. Biochem. Biophys. Res. Commun., 40: 839 (1970)PubMedCrossRefGoogle Scholar
  63. 63.
    Shapiro, R., and Gazit, A: Cross-linking of nucleic acids and proteins by bisulfite. In Protein Cross-linking: Biochemical and Molecular Aspects, Ed. by M. Friedman, Plenum Press, New York, p 633(1977)Google Scholar
  64. 64.
    Sklyadneva, V.B., Shie, M. and Tikchonenko, T.I.: Alteration of the DNA-secondary structure in the DNA polylysine complex evidenced by sodium bisulfite modification. FEBS Lett., 107: 129 (1979)PubMedCrossRefGoogle Scholar
  65. 65.
    Sklyadneva, V.B., Chekanovskaya, L.A., Nikoleva, I.A., Tikchonenko, T.I.: The secondary structure of bacteriophage DNA in situ VII. The reaction of sodium bisulfite with intraphage cytosine as a probe for studying the DNA-protein interaction. Biochim. Biophys. Acta, 565: 51 (1979)PubMedGoogle Scholar
  66. 66.
    Petering, D.H. and Shih, N.T.: Biochemistry of bisulfite-sulfur dioxide. Environ. Res., 9: 55 (1975)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robert Shapiro
    • 1
  1. 1.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations