Advertisement

Isolation and Characterization of Mutant Plant Cell Cultures

  • Jack M. Widholm
Part of the Basic Life Sciences book series (BLSC, volume 22)

Abstract

Mutant plant cell cultures are useful for biochemical and physiological studies, for markers in various genetic manipulation experiments and for the direct improvement of plants if the desired trait can be selected for and plants then be regenerated which express the trait. Many of the lines selected so far cannot truly be called mutants since genetic analysis, at the whole plant level, has not been carried out.

Keywords

Nitrate Reductase Nitrate Reductase Activity Resistant Line Resistant Cell Line Isonicotinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Maliga, Resistance mutants and their use in genetic manipulation, in: “Frontiers of plant Tissue Culture,” T. Thorpe, ed., University of Calgary, Calgary (1978).Google Scholar
  2. 2.
    P. Maliga, The need and the search for genetic markers in plant cell cultures, in: “Plant Cell Cultures: Results and Perspectives,” F. Sala, B. Parisi, R. Cella and O. Ciferri, eds., Elsevier/North-Holland Biomedical Press, Amsterdam (1980).Google Scholar
  3. 3.
    J. M. Widholm, The selection of agriculturally desirable traits with cultured plant cells, in: “Propagation of Higher Plants Through Tissue Culture — A Bridge Between Research and Application,” K.W. Hughes, R. Henke and M. Constantin, eds., Technical Info. Center, U.S. Dept. of Energy, Washington, DC (1978).Google Scholar
  4. 4.
    W. Handro, Mutagenesis and in vitro selection, in: “Plant Tissue Culture Methods and Applications in Agriculture,” T.A. Thorpe, ed., Academic Press, New York (1981).Google Scholar
  5. 5.
    D.S. Ingram, The expression of R-gene resistance to Phytophthora infestans in tissue cultures of Solanum tuberosum, J. Gen. Micro. 49:99–108 (1967).CrossRefGoogle Scholar
  6. 6.
    J.P. Helgeson, J.D. Kemp, G.T. Haberlach and D.P. Maxwell, A tissue culture system for studying disease resistance: the black shank disease in tobacco callus cultures, Phytopathol. 62:1439–1443 (1972).CrossRefGoogle Scholar
  7. 7.
    J. Ruyack, M.R. Downing, J.S. Chang and E.D. Mitchell, Growth of callus and suspension culture cells from cotton varieties (Gossypium hirsutum L.) resistant and susceptible to Xanthomonas malvacearum (E.F.SM.) Dows., In Vitro 15:368–373 (1979).CrossRefGoogle Scholar
  8. 8.
    B.G. Gengenbach, C.E. Green and C.M. Donovan, Inheritance of selected pathotoxin resistance in maize plants regenerated form cell cultures, Proc. Natl. Acad. Sci. USA 74:5113–5117 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    R.I.S. Brettell, E. Thomas and D.S. Ingram, Reversion of Texas male-sterile cytoplasm maize in culture to give fertile, T-toxin resistant plants, Theor. Appl. Genet. 58:55–58 (1980).Google Scholar
  10. 10.
    B.G. Gengebach and C.E. Green, Selection of T-cytoplasm maize callus cultures resistant to Helminthosporium maydis race T pathotoxin, Crop Sci. 15:645–649 (1975).CrossRefGoogle Scholar
  11. 11.
    B.G. Gengenbach, J.A. Connelly, D.R. Pring and M.F. Conde, Mitochondrial DNA variation in maize plants regenerated during tissue culture selection, Theor. Appl. Genet. 59:161–167 (1981).CrossRefGoogle Scholar
  12. 12.
    M. Behnke, Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of resistant plants, Theor. Appl. Genet. 55:69–71 (1979).CrossRefGoogle Scholar
  13. 13.
    M. Behnke, Selection of dihaploid potato callus for resistance to the culture filtrate of Fusarium oxysporum, Z. Pflanzenzuchtg. 85:254–258 (1980).Google Scholar
  14. 14.
    T.H. Oswald, A.E. Smith and D.V. Phillips, Phytotoxicity and detoxification of metribuzin in dark grown suspension cultures of soybean, Pesticide Biochem. Physiol. 8:73–83 (1977).CrossRefGoogle Scholar
  15. 15.
    E.B. Swanson and D.T. Tomes, In vitro responses of tolerant and susceptible lines of Lotus corniculatus L. to 2,4-D, Crop Sci. 20:792–795 (1980).CrossRefGoogle Scholar
  16. 16.
    R.S. Chaleff and M.F. Parsons, Direct selection in vitro for herbicide-resistant mutants of Nicotiana tabacum, Proc. Natl. Acad. Sci. USA 75:5104–5107 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    R.S. Chaleff, Further characterization of picloram-tolerant mutants, Theor. Appl. Genet. 58:91–95 (1980).Google Scholar
  18. 18.
    D.K. Miller and K.W. Hughes, Selection of paraquat-resistant variants of tobacco from cell cultures, In Vitro 16:1085–1091 (1980).CrossRefGoogle Scholar
  19. 19.
    D.N. Radin and P.S. Carlson, Herbicide-tolerant tobacco mutants selected in situ and recovered via regeneration from cell culture, Genetical Res. 32:85–89 (1978).CrossRefGoogle Scholar
  20. 20.
    M. Tal, H. Heikin and K. Dehan, Salt tolerance in the wild relatives of the cultivated tomato: responses of callus tissue of Lycopersicon esculentum, L. peruvianum and Solanum pennelli to high salinity, Z. Pflanzenphysiol. 86:231–240 (1978).Google Scholar
  21. 21.
    T.J. Orton, Comparison of salt tolerance between Hordeum vulgare and H. jubatum in whole plants and callus cultures, Z. Pflanzenphysiol. 98:105–118 (1980).Google Scholar
  22. 22.
    M.K. Smith and J.A. McComb, Effect of NaCl on the growth of whole plants and their corresponding callus cultues, Aust. J. Plant Physiol. 8:267–275 (1981).CrossRefGoogle Scholar
  23. 23.
    M.W. Nabor, S.E. Gibbs, C.S. Bernstein and M.E. Meis, NaCl-tolerant tobacco plants from cultured cells, Z. Pflanzenphysiol. 97:13–17 (1980).Google Scholar
  24. 24.
    A.K. Tyagi, A. Rashid and S.C. Maheshwari, Sodium chloride resistant cell line from haploid Datura innoxia Mill. A resistance trait carried from cell to plantlet and vice versa in vitro, Protoplasma 105:327–332 (1981).CrossRefGoogle Scholar
  25. 25.
    J.R. Wong and I.M. Sussex, Isolation of abscisic acid-resistant variants from tobacco cell cultures. I. Physiological bases for selection, Planta 148:97–102 (1980).CrossRefGoogle Scholar
  26. 26.
    J.R. Wong and I.M. Sussex, Isolation of abscisic acid-resistant variants from tobacco cell cultures. II. Selection and characterization of variants, Planta 148:103–107 (1980).CrossRefGoogle Scholar
  27. 27.
    J.M. Widholm, Differential expression of amino acid biosynthetic control isoenzymes in plants and cultured cells, in: “Plant Cell Cultures: Results and Perspectives,” F. Sala, B. Parisi, R. Cella and O. Ciferri, eds., Elsevier/North-Holland Biomedical Press, Amsterdam (1980).Google Scholar
  28. 28.
    B. Reisch, S.H. Duke and E.T. Bingham, Selection and characterization of ethionine-resistant alfalfa (Medicago sativa L.) cell lines, Theor. Appl. Genet. 59:89–94 (1981).CrossRefGoogle Scholar
  29. 29.
    S.W.J. Bright, P.B. Norbury and B.J. Miflin, Isolation of a recessive barley mutant resistant to S(2-aminoethyl)L-cysteine, Theor. Appl. Genet. 55:1–4 (1979).CrossRefGoogle Scholar
  30. 30.
    S.W.J. Bright, L.C. Featherstone and G.J. Miflin, Lysine metabolism in a barley mutant resistant to S(2-aminoethyl)cysteine, Planta 146:629–633 (1979).CrossRefGoogle Scholar
  31. 31.
    K.A. Hibberd, T. Walter, C.E. Green and B.G. Gengenbach, Selection and characterization of a feedback-insensitive tissue culture of maize, Planta 148:183–187 (1980).CrossRefGoogle Scholar
  32. 32.
    J.M. Widholm, Selection and characterization of cultured carrot and tobacco cells resistant to lysine, methionine and proline analogs, Can. J. Bot. 54:1523–1529 (1976).CrossRefGoogle Scholar
  33. 33.
    J.S.H. Kueh and S.W.J. Bright, Proline accumulation in a barley mutant resistant to trans-4-hydroxy-L-proline, Planta 153:166–171 (1981).CrossRefGoogle Scholar
  34. 34.
    J.E. Palmer and J.M. Widholm, Characterization of carrot and tobacco cells resistant to P-fluorophenylalanine, Plant Physiol. 56:233–238 (1975).PubMedCrossRefGoogle Scholar
  35. 35.
    J. Berlin, Para-fluorophenylalanine resistant cell lines of tobacco, Z. Pflanzenphysiol. 97:317–324 (1980).Google Scholar
  36. 36.
    D.A. Evans and O.L. Gamborg, Effects of para-fluorophenylalanine on ploidy levels of cell suspension cultures of Datura innoxia, Environ. Expt. Bot. 19:269–275 (1979).CrossRefGoogle Scholar
  37. 37.
    C.E. Flick, R.A. Jensen and D.A. Evans, Isolation, protoplast culture, and plant regeneration of PFP-resistant variants of Nicotiana tabacum Su/Su, Z. Pflanzenphysiol. 103:239–245 (1981).Google Scholar
  38. 38.
    J.F. Thompson, J.T. Madison, M.A. Waterman and A.E. Muenster, Effect of methionine on growth and protein composition of cultured soybean cotyledons, Phytochem. 20:941–945 (1981).CrossRefGoogle Scholar
  39. 39.
    L. Wu and J. Antonovics, Zinc and copper tolerance of Agrostis stolonifera L. in tissue culture, Amer. J. Bot. 65:268–271 (1978).CrossRefGoogle Scholar
  40. 40.
    C.P. Meredith, Selection and characterization of aluminum-resistant variants from tomato cell cultures, Plant Sci. Lett. 12:25–34 (1978).CrossRefGoogle Scholar
  41. 41.
    C.M. Colijn, A.J. Kool and J.J.J. Nijkamp, An effective chemical mutagenesis procedure for Petunia hybrida cell suspension cultures, Theor. Appl. Genet. 55:101–106 (1979).CrossRefGoogle Scholar
  42. 42.
    Y.M. Heimer, J.L. Wray and P. Filner, The effect of tungstate on nitrate assimilation in higher plant tissues, Plant Physiol. 44:1197–1199 (1969).PubMedCrossRefGoogle Scholar
  43. 43.
    J.M. Widholm, J.P. Ranch and K. Wakasa, Tungstate as a selective agent for high nitrate reductase activity in plant cells, In Vitro 17:211 (1981).Google Scholar
  44. 44.
    M.B. Berlyn, Isolation and characterization of isonicotinic acid hydrazide-resistant mutants of Nicotiana tabacum, Theor. Appl. Genet. 58:19–26 (1980).CrossRefGoogle Scholar
  45. 45.
    I. Zelitch and M.B. Berlyn, Altered glycine decarboxylation inhibition in isonicotinic acid hydrazide-resistant mutant callus lines and in regenerated plants and seed progeny, Plant Physiol. 69:198–204 (1982).PubMedCrossRefGoogle Scholar
  46. 46.
    A.L. Lawyer, M.B. Berlyn and I. Zelitch, Isolation and characterization of glycine hydroxamate-resistant cell lines of Nicotiana tabacum, Plant Physiol. 66:334–341 (1980).PubMedCrossRefGoogle Scholar
  47. 47.
    C.R. Somerville and W.L. Ogren, A phosphoglycolate phosphatase deficient mutant of Arabidopsis, Nature 280:833–836 (1979).CrossRefGoogle Scholar
  48. 48.
    C.R. Somerville and W.L. Ogren, Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate amino-transferase activity, Proc. Natl. Acad. Sci. USA 77:2684–2687 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    P.J. Dix and H.E. Street, Selection of plant cell lines with enhanced chilling resistance, Ann. Bot. 40:903–910 (1976).Google Scholar
  50. 50.
    K.M. Templeton-Somers, W.R. Sharp and R.M. Pfister, Selection of cold-resistant cell lines of carrot, Z. Pflanzenphysiol. 103:139–148 (1981).Google Scholar
  51. 51.
    P.J. Dix, Chilling tolerance is not transmitted sexually in plants regenerated from Nicotiana sylvestris cell lines, Z. Pflanzenphysiol. 84:223–226 (1977).Google Scholar
  52. 52.
    J.M. Mastrangelo and H.H. Smith, Selection and differentiation of aminopterin resistant cells of Datura innoxia, Plant Sci. Lett. 10:171–179 (1977).CrossRefGoogle Scholar
  53. 53.
    A. Maretzki and M. Thom, Characteristics of a galactose-adapted sugarcane cell line grown in suspension culture, Plant Physiol. 61:544–548 (1978).PubMedCrossRefGoogle Scholar
  54. 54.
    R.S. Chaleff and M.F. Parsons, Isolation of a glycerol-utilizing mutant of Nicotiana tabacum, Genetics 89:723–728 (1978).PubMedGoogle Scholar
  55. 55.
    M. Limberg, D. Cress and K.G. Lark, Variants of soybean cells which can grow in suspension with maltose as a carbon-energy source, Plant Physiol. 63:718–721 (1979).PubMedCrossRefGoogle Scholar
  56. 56.
    B. Reisch and E.T. Bingham, Plants from ethionine-resistant alfalfa tissue cultures: variation in growth and morphological characteristics, Crop Sci. 21:783–788 (1981).CrossRefGoogle Scholar
  57. 57.
    J.F. Shepard, D. Bidney and E. Shahin, Potato protoplasts in crop improvement, Science 208:17–24 (1980).PubMedCrossRefGoogle Scholar
  58. 58.
    P.S. Carlson, Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum, Science 168:487–489 (1970).PubMedCrossRefGoogle Scholar
  59. 59.
    R.L. Malmberg, Temperature-sensitive variants of Nicotiana tabacum isolated from somatic cell culture, Genetics 92:215–221 (1979).PubMedGoogle Scholar
  60. 60.
    R.L. Malmberg, Biochemical, cellular and developmental characterization of a temperature-sensitive mutant of Nicotiana tabacum and its second site revertant, Cell 22:603–609 (1980).PubMedCrossRefGoogle Scholar
  61. 61.
    J.C. Polacco, Arsenate as a potential negative selection agent for deficiency variants in cultured plant cells, Planta 146:155–160 (1979).CrossRefGoogle Scholar
  62. 62.
    A.J. Muller and R. Grafe, Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase, Molec. Gen. Genet. 161:67–76 (1978).CrossRefGoogle Scholar
  63. 63.
    J. King and V. Khanna, A nitrate reductase-less variant isolated from suspension cultures of Datura innoxia (Mill.), Plant Physiol. 66:632–636 (1980).PubMedCrossRefGoogle Scholar
  64. 64.
    T.M. Murphy and C.W. Imbrie, Induction and characterization of chlorate-resistant strains of Rosa damascena cultured cells, Plant Physiol. 67:910–916 (1981).PubMedCrossRefGoogle Scholar
  65. 65.
    J.M. Widholm, Utilization of indole analogs by carrot and tobacco cell tryptophan synthase in vivo and in vitro, Plant Physiol. 67:1101–1104 (1981).PubMedCrossRefGoogle Scholar
  66. 66.
    A.D. Savage, J. King and O.L. Gamborg, Recovery of a pantothenate auxotroph from a cell suspension culture of Datura innoxia Mill., Plant Sci. Lett. 16:367–376 (1979).CrossRefGoogle Scholar
  67. 67.
    J. King, R.B. Horsch and A.D. Savage, Partial characterization of two stable auxotrophic cell strains of Datura innoxia Mill., Planta 149:480–484 (1980).CrossRefGoogle Scholar
  68. 68.
    V. Sidorov, L. Menczel and P. Maliga, Isoleucine-requiring Nicotiana plant deficient in threonine deaminase, Nature 194:87–88 (1981).CrossRefGoogle Scholar
  69. 69.
    A. Strauss, F. Bucher and P.J. King, Isolation of biochemical mutants using haploid mesophyll protoplasts of Hyoscyamus muticus. I. A NO3 non-utilizing clone, Planta 153:75–80 (1981).CrossRefGoogle Scholar
  70. 70.
    C. Gebhardt, V. Schnebli and P.J. King, Isolation of biochemical mutants using haploid mesophyll protoplasts of Hyoscyamus muticus. II. Auxotrophic and temperature-sensitive clones, Planta 153:81–89 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Jack M. Widholm
    • 1
  1. 1.Department of AgronomyUniversity of IllinoisUrbanaUSA

Personalised recommendations