Advertisement

Ti-Plasmids: Genetic Engineering of Plants

  • J. Schröder
  • H. De Greve
  • J.-P. Hernalsteens
  • J. Leemans
  • M. Van Montagu
  • L. Otten
  • G. Schröder
  • L. Willmitzer
  • J. Schell
Part of the Basic Life Sciences book series (BLSC, volume 22)

Abstract

Crown gall is a neoplastic disease of most dicotyledonous plants and is caused by the soil bacterium Agrobacterium tumefaciens. A large extra-chromosomal plasmid in these bacteria was found to be responsible for its tumor-inducing capacity and was, therefore, called Ti-plasmid (1). Bacteria-free crown gall cells can be cultured in the absence of phytohormones and this hormone-independent growth defines tumor cells in plants (2). Sterile tumor tissues have been shown to contain a DNA segment (called T-DNA) which is homologous and colinear with a defined fragment of the Ti-plasmid, and it is covalently linked to plant DNA (3–9). The T-DNA has been localized in the nucleus (10, 11) and is directly responsible for the hormone-independent growth of the tumor cells. It is also responsible for the synthesis of low molecular weight compounds, called opines, which are not found in normal plant tissue. The opine produced defines crown galls as octopine, nopaline or agropine type tumors (12). Opines can be utilized by A. tumefaciens selectively as sources for carbon, nitrogen and energy, and, thus, the interaction between these bacteria and plants can be seen as a special parasitic relationship which benefits the bacteria (4).

Keywords

Agrobacterium Tumefaciens Crown Gall Crown Gall Tumor mRNA Activity Crown Gall Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Van Larebeke, G. Engler, M. Holsters, S. Van den Elsacker, I. Zaenen, R.A. Schilperoort and J. Schell, Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability, Nature 252:169 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    A.C. Braun, The activation of two growth substance systems accompanying the conversion of normal to tumor cells in crown gall, Cancer Res. 16:53 (1956).PubMedGoogle Scholar
  3. 3.
    M.-D. Chilton, H.J. Drummond, D.J. Merlo, D. Sciaky, A.L. Montoya, M.P. Gordon and E.W. Nester, Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis, Cell 11:263 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Schell, M. Van Montagu, M. De Beuckeleer, M. De Block, A. Depicker, M. De Wilde, G. Engler, C. Genetello, J.P. Hernalsteens, M. Holsters, J. Seurinck, B. Silva, F. Van Vliet and R. Villarroel, Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host, Proc. Roy. Soc. Lond. B 204:251 (1979).CrossRefGoogle Scholar
  5. 5.
    M. Lemmers, M. De Beuckeleer, M. Holsters, P. Zambryski, A. Depicker, J.P. Hernalsteens, M. Van Montagu and J. Schell, Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumors, J. Mol. Biol. 144:355 (1980).CrossRefGoogle Scholar
  6. 6.
    P. Zambryski, M. Holsters, K. Kruger, A. Depicker, J. Schell M. Van Montagu and H.M. Goodman, Tumor DNA structure in plant cells transformed by A. tumefaciens, Science 209:1385 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    N.S. Yadav, K. Postle, R.K. Saiki, M.F. Thomashow and M.-D. Chilton, T-DNA of crown gall teratoma is covalently joined to host plant DNA, Nature 287:458 (1980).CrossRefGoogle Scholar
  8. 8.
    M.F. Thomashow, R. Nutter, A.L. Montoya, M. P. Gordon, E.W. Nester, Integration and organization of Ti-plasmid sequences in crown gall tumors, Cell 19:729 (1980a).PubMedCrossRefGoogle Scholar
  9. 9.
    M.F. Thomashow, R. Nutter, K. Postle, M.-D. Chilton, F.R. Blattner, A. Powell, M.P. Gordon and E.W. Nester, Recombination between higher plant DNA and the Ti-plasmid of Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA 77:6448 (1980b).PubMedCrossRefGoogle Scholar
  10. 10.
    M.-D. Chilton, R.K. Saiki, N. Yadav, M.P. Gordon and F. Quetier, T-DNA from Agrobacterium Ti-plasmid is in the nuclear DNA fraction of crown gall tumor cells, Proc. Natl. Acad. Sci. USA 77:4060 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Willmitzer, M. De Beuckeleer, M. Lemmers, M. Van Montagu and J. Schell, The Ti-plasmid derived T-DNA is present in the nucleus and absent from plastids of plant crown gall cells, Nature 287:359 (1980).CrossRefGoogle Scholar
  12. 12.
    P. Guyon, M.-D. Chilton, A. Petit and J. Tempe, Agropine in “null-type” crown gall tumors: evidence for the generality of the opine concept, Proc. Natl. Acad. Sci. USA 77:2693 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    M.H. Drummond, M.P. Gordon, E.W. Nester and M.-D. Chilton, Foreign DNA of bacterial plasmid origin is transcribed in crown gall tumors, Nature 269:535 (1977).CrossRefGoogle Scholar
  14. 14.
    W.B. Gurley, J.D. Kemp, M.J. Alber, D.W. Sutton and J. Gallis, Transcription of Ti-plasmid derived sequences in three octopine-type crown gall tumor lines, Proc. Natl. Acad. Sci. USA 76:2828 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Willmitzer, L. Otten, G. Simons, W. Schmalenbach, J. Schroder, G. Schroder, M. Van Montagu, G. De Vos and J. Schell, Nuclear and polysomal transcripts of T-DNA in octopine crown gall suspension and callus cultures, Mol. Gen. Genet. 182:255 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    S.B. Gelvin, M.P. Gordon, E.W. Nester and A.I. Aronson, Transcription of the Agrobacterium Ti-plasmid in the bacterium and in crown gall tumors, Plasmid 6:17 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    M. De Beuckeleer, M. Lemmers, G. De Vos, L. Willmitzer, M. Van Montagu and J. Schell, Further insight on the transferred-DNA of octopine crown gall, Mol. Gen. Genet. 193:283 (1981).CrossRefGoogle Scholar
  18. 18.
    L. Willmitzer, G. Simons and J. Schell, the TL-DNA in octopine crown gall tumors codes for seven well-defined polyadenylated transcripts, EMBO J. 1:139 (1982).PubMedGoogle Scholar
  19. 19.
    L. Willmitzer, W. Schmalenbach and J. Schell, Transcription of T-DNA in octopine and nopaline crown gall tumors is inhibited by low concentrations of-amanitin, Nucl. Acids Res. 9:4801 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Leemans, R. Deblaere, L. Willmitzer, H. De Greve, J.P. Hernalsteens, M. Van Montagu and J. Schell, Genetic identification of functions of TL-DNA transcripts in octopine crown galls, EMBO J. 1:147 (1982).PubMedGoogle Scholar
  21. 21.
    J.C. McPherson, E.W. Nester and M.P. Gordon, Proteins encoded by Agrobacterium tumefaciens Ti-plasmid DNA (T-DNA) in crown gall tumors, Proc. Natl. Acad. Sci. USA 77:2666 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Schröder and J. Schröder, Hybridization selection and translation of T-DNA encoded mRNAs from octopine tumors, Mol. Gen. Genet. 185:51 (1982).CrossRefGoogle Scholar
  23. 23.
    B.P. Koekman, G. Ooms, P.M. Klapwijk and R.A. Schilperorrt, Genetic map of an octopine Ti-plasmid, Plasmid 2:347 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    H. De Greve, H. Decraemer, J. Seurinck, M. Van Montagu and J. Schell, The functional organization of the octopine Agrobacterium tumefaciens plasmid pTiB6S3, Plasmid 6:235 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    D.J. Garfinkel, R.B. Simpson, L.W. Ream, F.F. White, M.P. Gordon and E.W. Nester, Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis, Cell 27:143 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Schröder, G. Schröder, H. Huisman, R.A. Schilperoort and J. Schell, The mRNA for lysopine dehydrogenase in plant tumor cells is complementary to a Ti-plasmid fragment, FEBS Letters 129:166 (1981).CrossRefGoogle Scholar
  27. 27.
    J. Schröder, A. Hillebrand, W. Klipp and A. Puhler, Expression of plant tumor-specific proteins in minicells of Escherichia coli: a fusion protein of lysopine dehydrogenase with chloramphenicol acetyltransferase, Nucl. Acids Res. 9:5187 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    J.P. Hernalsteens, F. Van Vliet, M. De Beuckeleer, A. Depicker, G. Engler, M. Holsters, M. Van Montagu and J. Schell, The Agrobacterium tumefaciens Ti-plasmid as a host vector system for introducing foreign DNA in plant cells, Nature 287:654 (1980).CrossRefGoogle Scholar
  29. 29.
    J. Leemans, Ch. Shaw, R. Deblaere, H. De Greve, J.P. Hernalsteens, M. Maes, M. Van Montagu and J. Schell, Site-specific mutagenesis of Agrobacterium Ti-plasmids and transfer of genes to plant cells, J. Mol. Appl. Genet. 1:149 (1981).PubMedGoogle Scholar
  30. 30.
    A.C. Braun, A demonstration of the recovery of the crown gall tumor cell with the use of complex tumors of single cell origin, Proc. Natl. Acad. Sci. USA 45:932 (1959).PubMedCrossRefGoogle Scholar
  31. 31.
    A.C. Braun and H.N. Wood, Suppression of the neoplastic state with the acquisition of specialized functions in cells, tissues and organs of crown gall teratomas of tobacco, Proc. Natl. Acad. Sci. USA 73:496 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Turgeon, H.N. Wood and A.C. Braun, Studies on the recovery of crown gall tumor cells, Proc. Natl. Acad. Sci. USA 73:3562 (1976).PubMedCrossRefGoogle Scholar
  33. 33.
    H.N. Wood, A.N. Binns and A.C. Braun, Differential expression of oncogenicity and nopaline synthesis in intact leaves derived from crown gall teratomas of tobacco, Differentiation 11:175 (1978).CrossRefGoogle Scholar
  34. 34.
    F. Yang, A.L. Montoya, D.J. Merlo, M.H. Drummond, M.-D. Chilton, E.W. Nester and M.P. Gordon, Foreign DNA sequences in crown gall teratomas and their fate during loss of the tumorous traits, Mol. Gen. Genet. 177:707 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    G.J. Wullems, L. Molendijk, G. Ooms and R.A. Schilperoort, Differential expression of crown gall tumor markers in transformants obtained after in vitro Agrobacterium tumefaciens-induced transformation of cell wall regenerating protoplasts derived from Nicotiana tabacum, Proc. Natl. Acad. Sci. USA 78:4344 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    G.J. Wullems, L. Molendijk, G. Ooms and R.A. Schilperoort, Retention of tumor markers in F1 progeny plants from in vitro induced octopine and nopaline tumor tissues, Cell 24:719 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    L. Otten, H. De Greve, J.P. Hernalsteens, M. Van Montagu, O. Schieder, J. Straub and J. Schell, Mendelian transmission of genes introduced into plants by the Ti-plasmids of Agrobacterium tumefaciens, Mol. Gen. Genet. 183:209 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    G. Engler, M. Van Montagu, I. Zaenen and J. Schell, Homology between Ti-plasmids of Agrobacterium tumefaciens: hybridization studies using electron microscopy, Biochem. Soc. Trans. 5:930 (1977).PubMedGoogle Scholar
  39. 39.
    G. De Vos, M. De Beuckeleer, M. Van Montagu and J. Schell, Restriction endonuclease mapping of the octopine tumor-inducing plasmid pTiAch5 of Agrobacterium tumefaciens, Plasmid 6:249 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. Schröder
    • 1
  • H. De Greve
    • 2
  • J.-P. Hernalsteens
    • 2
  • J. Leemans
    • 2
  • M. Van Montagu
    • 2
    • 3
  • L. Otten
    • 1
  • G. Schröder
    • 1
  • L. Willmitzer
    • 1
  • J. Schell
    • 1
    • 3
  1. 1.Max-Planck-Institut für ZüchtungsforschungKöln 30Federal Republic of Germany
  2. 2.Laboratorium Genetisch VirologieVrije UniversiteitBrusselsBelgium
  3. 3.Laboratorium voor GenetikaRijksuniversiteit GentBelgium

Personalised recommendations