Fusion of Plant Protoplasts: Recent Advances in Studies on Regulation of Cell Cycle, Gene Expression and in Parasexual Gene Transfer

  • Denes Dudits
Part of the Basic Life Sciences book series (BLSC, volume 22)


Since the early 1970s the technique of fusion between plant protoplasts (1–4) has become a powerful tool in genetic manipulation of higher plants. Experiments performed by fusion of protoplasts have proved that hybridization of plant species can be parasexually accomplished. Several excellent reviews of the plant somatic hybridization field have discussed different aspects of production of somatic hybrids with special emphasis on selection systems (5–12). As shown by the continuously increasing number of examples, intra- and inter-specific hybridization through protoplast fusion can result in integration of the parental diploid genomes with basically similar gene expression patterns as in the sexual hybrids (13–18). At present, the somatic hybridization with very few exceptions is restricted only to species belonging to Solanaceae family (12). Because of this limitation, any suggestion or general conclusion about the potential use of somatic cell hybridization with application in plant breeding requires that the spectrum of species included in fusion experiments be widened.


Somatic Hybrid Protoplast Fusion Somatic Cell Hybridization Plant Protoplast Leaf Protoplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Power, S.E. Cummins, E.C. Cocking, Fusion of isolated plant protoplasts, Nature 225:1016–1018 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    W.A. Keller and G. Melchers, The effect of high pH and calcium on tobacco leaf protoplast fusion, Z. Naturforsch. 28c:737–741 (1973).Google Scholar
  3. 3.
    K.N. Kao and M.R. Michayluk, A method for high-frequency intergeneric fusion of plant protoplasts, Planta 115:355–367 (1974).CrossRefGoogle Scholar
  4. 4.
    A. Wallin, K. Glimelius and T. Eriksson, The induction of aggregation and fusion of Daucus carota protoplasts by polyethylene glycol, Z. Pflanzenphysiol. 74:64–80 (1974).CrossRefGoogle Scholar
  5. 5.
    O.L. Gamborg, F. Constabel, L.C. Fowke, K.N. Kao, K. Ohyama, K.K. Kartha and L.E. Pelcher, Protoplast and cell culture methods in somatic hybridization in higher plants, Can. J. Genet. and Cytol. 16:737–750 (1974).Google Scholar
  6. 6.
    G. Melchers, Plant hybrids by fusion of protoplasts, in: “Recombinant Molecules: Impact on Science and Society,” R.F. Beers and E.G. Bassett, eds., Raven Press, New York (1977).Google Scholar
  7. 7.
    K.N. Kao, Plant protoplast fusion and somatic hybrids, in: “Proc. Symposium on Plant Tissue Culture,” Science Press, Peking (1978).Google Scholar
  8. 8.
    E.C. Cocking, Selection and somatic hybridization, in: “Frontiers of Plant Tissue Culture,” T.A. Thorpe, ed., International Association for Plant Tissue Culture, Calgary (1978).Google Scholar
  9. 9.
    R.G. Butenko, Cultivation of isolated protoplasts and hybridization of somatic plant cells, Intl. Rev. Cytol. 59:323–373 (1979).CrossRefGoogle Scholar
  10. 10.
    E. Thomas, P.J. King and I. Potrykus, Improvement of crop plants via single cells in vitro, an assessment, Z. Pflanzenzucht. 82:1–30 (1979).Google Scholar
  11. 11.
    D.J. Cove, The uses of isolated protoplasts in plant genetics, Heredity 43:295–314 (1979).CrossRefGoogle Scholar
  12. 12.
    O. Schieder and I.K. Vasil, Protoplast fusion and somatic hybridization, Intl. Rev. Cytol. Suppl. 11B:21–42 (1980).Google Scholar
  13. 13.
    P.S. Carlson, H.H. Smith and R.D. Dearing, Parasexual interspecific plant hybridization, Proc. Natl. Acad. Sci. USA 69:2292–2294 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Melchers and G. Labib, Somatic hybridization of plants by fusion of protoplasts. I. Selection of light resistant hybrids of “haploid” light sensitive varieties of tobacco, Molec. Gen. Genet. 135:277–294 (1974).CrossRefGoogle Scholar
  15. 15.
    J.B. Power, E.M. Frearson, C. Hayward, D. George, P.K. Evans, S.F. Berry and E.C. Cocking, Somatic hybridization of Petunia hybrida and P. parodii, Nature 263:500–502 (1976).CrossRefGoogle Scholar
  16. 16.
    D. Dudits, G. Hadlaczky, E. Levi, O. Fejer, Z. Haydu and G. Lazar, Somatic hybridization of Daucus carota and D. capillifolius by protoplast fusion, Theor. Appl. Genet. 51:127–132 (1977).Google Scholar
  17. 17.
    P. Maliga, G. Lazar, F. Joo, A.H. Nagy and L. Menczel, Restoration of morphogenetic potential in Nicotiana by somatic hybridization, Molec. Gen. Genet. 157:291–296 (1977).CrossRefGoogle Scholar
  18. 18.
    D.A. Evans, L.R. Wetter and O.L. Gamborg, Somatic hybrid plants of Nicotiana glauca and Nicotiana tabacum obtained by protoplast fusion, Physiol. Plant. 48:225–230 (1980).CrossRefGoogle Scholar
  19. 19.
    K. Chen, S.G. Wildman and H.H. Smith, Chloroplast DNA distribution in parasexual hybrids as shown by polypeptide composition of fraction I protein, Proc. Natl. Acad. Sci. USA 74:5109–5112 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Belliard, G. Pelletier, F. Vedel and F. Quatier, Morphological characteristics and chloroplast DNA distribution in different cytoplasmic parasexual hybrids of Nicotiana tabacum, Molec. Gen. Genet. 165:231–237 (1978).CrossRefGoogle Scholar
  21. 21.
    Y.Y. Gleba, Extranuclear inheritance investigated by somatic hybridization, in: “Frontiers of Plant Tissue Culture,” T.A. Thorpe, ed., International Association for Plant Tissue Culture, Calgary (1978).Google Scholar
  22. 22.
    G. Melchers, M.D. Sacristan and A.A. Holder, Somatic hybrid plants of potato and tomato regenerated from fused protoplasts, Carlsberg Res. Commun. 43:277–294 (1978).CrossRefGoogle Scholar
  23. 23.
    P. Medgyesy, L. Menczel and P. Maliga, The use of cytoplasmic streptomycin resistance: chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris, and isolation of their somatic hybrids, Molec. Gen. Genet. 179:693–698 (1980).CrossRefGoogle Scholar
  24. 24.
    L. Menczel, F. Nagy, Z. Kiss and P. Maliga, Streptomycin resistant and sensitive hybrids of Nicotiana tabacum + Nicotiana knightiana: correlation of resistance with N. tabacum plastids, Theor. Appl. Genet. 59:191–195 (1981).CrossRefGoogle Scholar
  25. 25.
    A. Zelcher, D. Aviv and E. Galun, Interspecific transfer of cytoplasmic male sterility by fusion between protoplasts of normal Nicotiana sylvestris and X-ray irradiated protoplasts of male-sterile N. tabacum, Z. Pflanzenphysiol. 90:397–407 (1978).Google Scholar
  26. 26.
    S. Izhar, J.B. Power, Somatic hybridization in Petunia: a male sterile cytoplasmic hybrid, Plant Sci. Lett. 14:49–55 (1979).CrossRefGoogle Scholar
  27. 27.
    D. Aviv and E. Galun, Restoration of fertility in cytoplasmic male sterile (CMS) Nicotiana sylvestris by fusion with X-irradiated N. tabacum protoplasts, Theor. Appl. Genet. 58:121–127 (1980).CrossRefGoogle Scholar
  28. 28.
    G. Belliard, F. Vedel and G. Pelletier, Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion, Nature 281:401–403 (1979).CrossRefGoogle Scholar
  29. 29.
    F. Nagy, I. Torok and P. Maliga, Extensive rearrangements in the mitochondrial DNA in somatic hybrids of Nicotiana tabacum and Nicotiana knightiana, Molec. Gen. Genet. 183:437–439 (1981).CrossRefGoogle Scholar
  30. 30.
    J.B. Power, E.M. Frearson, C. Hayward and E.C. Cocking, Some consequences of the fusion and selective culture of Petunia and Parthenocissus protoplasts, Plant Sci. Lett. 5:197–207 (1975).CrossRefGoogle Scholar
  31. 31.
    L. R. Wetter, Isoenzyme pattern in soybean-Nicotiana somatic hybrid cell lines, Molec. Gen. Genet. 150:231–235 (1977).CrossRefGoogle Scholar
  32. 32.
    D. Dudits, O. Fejer, G. Hadlaczky, C. Koncz, G.B. Lazar and G. Horvath, Intergeneric gene transfer mediated by plant protoplast fusion, Molec. Gen. Genet. 179:283–288 (1980a).CrossRefGoogle Scholar
  33. 33.
    P. Maliga, Z.R. Kiss, A.H. Nagy and G. Lazar, Genetic instability in somatic hybrids of Nicotiana tabacum and N. knightiana, Molec. Gen. Genet. 163:145–151 (1978).CrossRefGoogle Scholar
  34. 34.
    Y.Y. Gleba and F. Hoffmann, Hybrid cell lines Arabidopsis thaliana + Brassica campestris: no evidence for specific chromosome elimination, Molec. Gen. Genet. 165:257–264 (1978).CrossRefGoogle Scholar
  35. 35.
    O. Schieder, Hybridization experiments with protopalsts from chlorophyll-deficient mutants of some Solanaceaous species, Planta 137:253–257 (1977).CrossRefGoogle Scholar
  36. 36.
    D. Dudits, G. Hadlaczky, G. Bajszar, D. Koncz, G. Lazar and G. Horvath, Plant regeneration from intergeneric cell hybrids, Plant Sci. Lett. 15:101–112 (1979).CrossRefGoogle Scholar
  37. 37.
    E.C. Cocking, D. George, M.J. Price-Jones and J.B. Power, Selection procedures for production of inter-species somatic hybrids of Petunia parodii. 2. Albino complementation selection, Plant Sci. Lett. 10:7–12 (1977).CrossRefGoogle Scholar
  38. 38.
    O. Schieder, Somatic hybrids of Datura innoxia Mill. and Datura discolor Beruh., and Datura innoxia Mill. and Datura stramonium L. var. tatula L., Molec. Gen. Genet. 167:113–119 (1978).Google Scholar
  39. 39.
    K. Glimelius, T. Eriksson, R. Grafe and A.J. Muller, Somatic hybridization of nitrate-reductase deficient mutants of Nicotiana tabacum by protoplast fusion, Physiol. Plant. 44:273–277 (1978).CrossRefGoogle Scholar
  40. 40.
    D.W.R. White and I.K. Vasil, Use of amino acid analogue-resistant cell lines for selection of Nicotiana sylvestris somatic cell hybrids, Theor. Appl. Genet. 51:161–167 (1979).Google Scholar
  41. 41.
    C.T. Harms, I. Potrykus and J.M. Widholm, Complementation and dominant expression of amino acid analogue resistance markers in somatic hybrid clones from Daucus carota after protoplast fusion, Z. Pflanzenphysiol. 101:377–390 (1981).Google Scholar
  42. 42.
    G.J. Wullems, L. Molendijk and R.A. Schilperoort, The expression of tumor markers in intraspecific somatic hybrids of normal and crown gall cells from Nicotiana tabacum, Theor. Appl. Genet. 56:3208 (1980).CrossRefGoogle Scholar
  43. 43.
    H.H. Smith, K.N. Kao and N.C. Combatti, Interspecific hybridization by protoplast fusion in Nicotiana, confirmation and extension, J. Hered. 67:124–128 (1976).Google Scholar
  44. 44.
    Y.Y. Gleba and F. Hoffmann, “Arabidobrassica”: A novel plant obtained by protoplast fusion, Planta 149:112–117 (1980).CrossRefGoogle Scholar
  45. 45.
    G. Krumbiegel and O. Schieder, Selection of somatic hybrids after fusion of protoplasts from Datura innoxia Mill. and Atropa belladonna L., Planta 145:371–375 (1979).CrossRefGoogle Scholar
  46. 46.
    N. Zenkteler and G. Melchers, In vitro hybridization by sexual methods and by fusion of somatic protoplasts, Theor. Appl. Genet. 52:81–90 (1978).Google Scholar
  47. 47.
    F. Hoffmann, H. Cshenck, H.W. Kohlenbach and Y.Y. Gleba, Regeneration and fusion of protoplasts from important crop plants of the Brassiceae, in: “Advances in Protoplast Research,” L. Ferenczy and G.L. Farkas, eds., Akademiai Kiado, Budapest (1980).Google Scholar
  48. 48.
    D. Dudits, G. Hadlaczky, G. Lazar and Z. Haydu, Increase in genetic variability through somatic cell hybridization of distantly related plant species, in: F. Sala, B. Parisi, R. Cella and O. Ciferri, eds., Elsevier-North Holland (1980b).Google Scholar
  49. 49.
    L. Szabados and D. Dudits, Fusion between interphase and mitotic plant protoplasts, Exp. Cell Res. 127:441–446 (1980).CrossRefGoogle Scholar
  50. 50.
    A.G. Schwartz, P.R. Coock and H. Harris, Correction of genetic defect in a mammalian cell, Nature New Biol. 230:5–8 (1971).PubMedGoogle Scholar
  51. 51.
    Y.L. Boyd and H. Harris, Correction of genetic defects in mammalian cells by the input of small amounts of foreign genetic material, J. Cell Sci. 13:841–861 (1973).PubMedGoogle Scholar
  52. 52.
    J.M. Graves, G.K. Chew, D.W. Cooper and P.G. Johnston, Marsupial-mouse cell hybrids containing fragments of the marsupial X chromosome, Somatic Cell Genet. 5:481–489 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    A. Rodgers, Detection of small amount of human DNA in human-rodent hybrids, J. Cell Sci. 38:391–403 (1979).PubMedGoogle Scholar
  54. 54.
    K. Tsumamoto, R. Klein, M. Hatanaka, Insertion of muntjac gene segment into hamster cells by cell fusion, J. Cell. Physiol. 104:225–232 (1980).CrossRefGoogle Scholar
  55. 55.
    D. Dudits, C. Koncz, G. Bajszar, G. Hadlaczky, G. Lazar and G. Horvath, Intergeneric transfer of nuclear markers through fusion between dividing and mitotically inactive plant protoplasts, in: “Advances in Protoplast Research,” L. Ferenczy and G.L. Farkas, eds., Akademiai Kiado, Budapest (1980c).Google Scholar
  56. 56.
    D. Dudits, L. Szabados and G. Hadlaczky, Premature chromosome condensation in plant cells and its potential use in genetic manipulation, in: “Premature Chromosome Condensation: Application in Basic, Clinical and Mutation Research,” P.N. Rao, R.T. Johnson and K. Sperling, eds., Academic Press, New York (in press) (1981).Google Scholar
  57. 57.
    K.N. Kao, F. Constabel, M.R. Michayluk and O.L. Gamborg, Plant protoplast fusion and growth of intergeneric hybrid cells, Planta 120:215–227 (1974).CrossRefGoogle Scholar
  58. 58.
    D. Dudits, K.N. Kao, F. Constabel and O.L. Gamborg, Fusion of carrot and barley protoplasts and division of heterokaryocytes, Can. J. Genet. Cytol. 18:263–269 (1976).Google Scholar
  59. 59.
    B. Von der Haar, K. Sperling and D. Gregor, Maturing Xenopus oocytes induce chromosome condensation in somatic plant nuclei, Exp. Cell Res. 134:477–481 (1981).PubMedCrossRefGoogle Scholar
  60. 60.
    Z.R. Sung, G.B. Lazar and D. Dudits, Cycloheximide resistance in carrot culture: a differentiated function, Plant Physiol. 68:261–264 (1981).PubMedCrossRefGoogle Scholar
  61. 61.
    Z.R. Sung, Mutagenesis fo cultured plant cells, Genetics 84:51–57 (1976).PubMedGoogle Scholar
  62. 62.
    G.B. Lazar, D. Dudits and Z.R. Sung, Expression of cycloheximide resistance in carrot somatic hybrids and their segregants, Genetics 98:347–356 (1981).PubMedGoogle Scholar
  63. 63.
    D. Dudits, Backfusion with somatic protoplasts as a method in genetic manipulation of plants, Acta Biologica Acad. Sci. Hungaricae (in press) (1982).Google Scholar
  64. 64.
    L.A. Klobutcher and F.H. Ruddle, Chromosome mediated gene transfer, Ann. Rev. Biochem. 50:533–554 (1981).PubMedCrossRefGoogle Scholar
  65. 65.
    R. Malmberg and R.J. Griesbach, The isolation of mitotic and meiotic chromosomes from plant protoplasts, Plant Sci. Lett. 17:141–147 (1980).CrossRefGoogle Scholar
  66. 66.
    L. Szabados, G. Hadlaczky and D. Dudits, Uptake of isolated plant chromosomes by plant protoplasts, Planta 151:141–145 (1981).CrossRefGoogle Scholar
  67. 67.
    P.G.N. Jeppensen, A. T. Bankier and L. Sanders, Non-histone proteins and the structure of metaphase chromosomes, Exp. Cell Res. 115:293–302 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Denes Dudits
    • 1
  1. 1.Institute of Genetics, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations