Advertisement

Metabolism and Neurotransmission

  • Gary E. Gibson
  • John P. Blass

Abstract

Oxidative metabolism is essential for normal neuronal function. The brain consumes 20% of the oxygen that is used by the body even though it represents only 2% of the total body mass. Most of this oxygen is utilized for the catabolism of glucose and the production of ATP. However, mild to moderate decreases in the availability or utilization of oxygen or glucose impair brain function without reducing the levels of energy metabolites (i.e., ATP).1–4 The cerebral dysfunction that accompanies impaired oxidative metabolism is associated with changes in neurotransmitter metabolism. Thus, an understanding of the pathophysiological basis of altered neuronal function requires knowledge of the relationship of metabolism to neurotransmission.

Keywords

Oxidative Metabolism Pyruvate Dehydrogenase Cholinergic System Tricarboxylic Acid Cycle Thiamine Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gurdjian, E. S., Stone, W. E., and Webster, J. E., 1944, Arch. Neurol Psychiatry 54: 472–477.CrossRefGoogle Scholar
  2. 2.
    Siesjö, B., Johannsson, H., Ljunggren, B., and Norberg, K., 1974, Brain Dysfunction in Metabolic Disorders (R Plum, ed.), Raven Press, New York, pp. 75–112.Google Scholar
  3. 3.
    Duffy, T. B., Nelson, S. R., and Lowry, O. H., 1972, J. Neurochem, 19: 1043–1048.CrossRefGoogle Scholar
  4. 4.
    Gibson, G. E., and Blass, J. P., 1976, J. Neurochem. 27: 37–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Atkinson, D. E., 1977, Cellular Energy Metabolism and Its Regulation, Academic Press, New York.Google Scholar
  6. 6.
    Gibson, G. E., and Blass, J. P., 1976, J. Biol. Chem. 251: 4127–4130.PubMedGoogle Scholar
  7. 7.
    Gibson, G. E., and Blass, J. P., 1976, J. Neurochem. 26: 1073–1078.PubMedCrossRefGoogle Scholar
  8. 8.
    Gibson, G. E., Jope, R., and Blass, J. P., 1975, Biochem. J. 148: 17–23.PubMedGoogle Scholar
  9. 9.
    Gibson, G. E., and Blass, J. P., 1979, Biochem. Pharmacol. 28: 133–140.PubMedCrossRefGoogle Scholar
  10. 10.
    Yanagahira, T., 1974, J. Neurochem. 22: 113–117.CrossRefGoogle Scholar
  11. 11.
    Yatsu, F. M., Lee, L. W., and Liao, C. L., 1975, Stroke 6: 678–683.PubMedCrossRefGoogle Scholar
  12. 12.
    Mann, P. J. G., Tennenbaum, M., and Quastel, J. H., 1938, Biochem. J. 32: 243–261.PubMedGoogle Scholar
  13. 13.
    Mann, P. J. G., Tennenbaum, M., and Quastel, J. H., 1939, Biochem. J. 33: 822–835.PubMedGoogle Scholar
  14. 14.
    Browning, E. T., 1976, Biology of Cholinergic Function (A. M. Goldberg and I. Hanin, Eds.), Raven Press, New York, pp. 193–196.Google Scholar
  15. 15.
    Tucek, S., and Cheng, S. C., 1974, Neurochem. 22: 893–914.CrossRefGoogle Scholar
  16. 16.
    Lefresne, P., Guyenet, P., and Glowinski, J., 1973, J. Neurochem. 20: 1083–1097.PubMedCrossRefGoogle Scholar
  17. 17.
    Lefresne, P., Hamon, M., Beaujouan, J. C., and Glowinski, J., 1975, J. Neurochem. 25: 415–422.PubMedCrossRefGoogle Scholar
  18. 18.
    Ksiezak, H., and Gibson, G. E., 1981, J. Neurochem. 37: 305–314.PubMedCrossRefGoogle Scholar
  19. 19.
    Itoh, T., and Quastel, J. H., 1970, Biochem. J. 116: 641–655.Google Scholar
  20. 20.
    Barker, L. A., Mittag, T. W., and Krespan, B., 1977, Cholinergic Mechanisms and Psycho- pharmacology (D. J. Jenden, ed.), Plenum Press, New York, pp. 465–480.Google Scholar
  21. 21.
    Jope, R. S., 1978, Cholinergic Mechanisms and Psychopharmacology (D. J. Jenden, ed.), Plenum Press, New York, pp. 497–510.CrossRefGoogle Scholar
  22. 22.
    Lefresne, P. J., Beaujouan, C., and Glowinski, J., 1978, Biochimie 60: 479–487.PubMedCrossRefGoogle Scholar
  23. 23.
    Lefresne, P. J., Beaujouan, C., and Glowinski, J., 1978, Nature 274: 497–500.PubMedCrossRefGoogle Scholar
  24. 24.
    Gibson, G. E., and Duffy, T. E., 1981, J. Neurochem. 36: 28–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Reynolds, S. F., and Blass, J. P., 1976, Neurology (Minneap.) 26: 625–628.Google Scholar
  26. 26.
    Sorbi, S., Amaducci, L., and Blass, J. P., 1982, The Aging Brain: Cellular and Molecular Mechanisms of Aging in the Nervous System (E. Giacobini, G. Giacobini, and A. Vernadakis, Eds.), Raven Press, New York, pp. 223–230.Google Scholar
  27. 27.
    Perry, E. K., Perry, R. H., Tomlinson, B. E., Blessed, G., and Gibson, P. H., 1980, Neurosci. Lett. 18: 105–110.PubMedCrossRefGoogle Scholar
  28. 28.
    Sterri, S. H., and Fonnum, F., 1980, J. Neurochem. 35: 249–254.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakamura, R., Cheng, S.-C., and Naruse, H., 1970, Biochem. J. 118: 443–450.PubMedGoogle Scholar
  30. 30.
    Gibson, G. E., and Shimada, M., 1981, Biochem. Pharmacol. 29: 167–174.CrossRefGoogle Scholar
  31. 31.
    Molenaar, P. C., and Polak, R. L., 1976, J. Neurochem. 26: 95–99.PubMedGoogle Scholar
  32. 32.
    Gibson, G. E., Blass, J. P., and Jenden, D. J., 1978, J. Neurochem. 30: 71–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Beri, S., Clarke, D. D., and Schneider, D. (Eds.), 1975, Metabolic Compartmentation and Neurotransmission, Raven Press, New York.Google Scholar
  34. 34.
    Watson, J. A., and Lowenstein, J. M., 1970, J. Biol. Chem. 245: 5993–6002.PubMedGoogle Scholar
  35. 35.
    Spencer, A. F., and Lowenstein, J. M., 1962, J. Biol. Chem. 237: 3640–3648.PubMedGoogle Scholar
  36. 36.
    Sterling, G. H., and O’Neill, J. J., 1978, J. Neurochem. 31: 525–530.PubMedCrossRefGoogle Scholar
  37. 37.
    Sollenberg, J., and Sorbo, B., 1970, J. Neurochem. 17: 201–207.PubMedCrossRefGoogle Scholar
  38. 38.
    Tucek, S., 1967, J. Neurochem. 14: 531–545.PubMedCrossRefGoogle Scholar
  39. 39.
    Szutowicz, A., Stepien, M., Lysiak, W., and Angielski, S., 1976, Acta Biochim. (Pol.) 23: 227–234.Google Scholar
  40. 40.
    Tucek, S., Dolezal, V., and Sullivan, A. C., 1981, J. Neurochem. 36: 1331–1337.PubMedCrossRefGoogle Scholar
  41. 41.
    Tucek, S., and Cheng, S. C., 1970, Biochem. Biophys. Acta 208: 538–540.PubMedCrossRefGoogle Scholar
  42. 42.
    Polak, R. L., Molenaar, P. C., and Braggaar-Schaap, P., 1978, Cholinergic Mechanisms and Psychopharmacology (D. J. Jenden, ed.), Plenum Press, New York, pp. 511–524.Google Scholar
  43. 43.
    Robinson, B. H., Williams, G. R., Halperin, M. L., and Leznoff, C. C., 1971, Eur. J. Biochem. 20: 65–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Jope, R. S., Weiler, M. H., and Jenden, D. J., 1978, J. Neurochem. 30: 949–954.PubMedCrossRefGoogle Scholar
  45. 45.
    Tucek, S., 1967, Biochem. J. 104: 749–756.PubMedGoogle Scholar
  46. 46.
    Benjamin, A. M., and Quastel, J. H., 1981, Science 213: 1495–1497.PubMedCrossRefGoogle Scholar
  47. 47.
    Ksiezak, H. J., and Gibson, G. E., 1981, J. Neurochem. 37: 88–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Browning, M., Baudry, M., Bennett, W. F., and Lynch, G., 1981, J. Neurochem. 36: 1932–1940.PubMedCrossRefGoogle Scholar
  49. 49.
    Browning, M., Bennett, W., Kelly, P., and Lynch, G., 1981, Brain Res. 218: 255–266.PubMedCrossRefGoogle Scholar
  50. 50.
    Browning, M., Dunwiddie, T., Bennett, W., Gispen, W., and Lynch, G., 1981, Science 203: 60–62.CrossRefGoogle Scholar
  51. 51.
    Morgan, D., and Routtenberg, A., 1981, Science 214: 470–471.PubMedCrossRefGoogle Scholar
  52. 52.
    Lefresne, P., Hamon, M., Beaujouan, S. C., and Glowinski, I., 1977, Biochemie 59: 197–215.CrossRefGoogle Scholar
  53. 53.
    Ksiezak-Reding, H., Blass, J. P., and Gibson, G. E., 1982, J. Neurochem. 38: 1627–1636.PubMedCrossRefGoogle Scholar
  54. 54.
    Kuhar, M. J., 1978, Cholinergic Mechanisms and Psychopharmacology (D. J. Jenden, ed.), Plenum Press, New York, pp. 447–456.CrossRefGoogle Scholar
  55. 55.
    Yamamura, H. I., and Snyder, S. H., 1973, J. Neurochem. 21: 1355–1374.PubMedCrossRefGoogle Scholar
  56. 56.
    Simon, J. R., and Kuhar, M. J., 1976, J. Neurochem. 27: 93–99.PubMedCrossRefGoogle Scholar
  57. 57.
    Dowdall, M. J., and Simon, E. J., 1973, J. Neurochem. 21: 969–982.PubMedCrossRefGoogle Scholar
  58. 58.
    Parsons, S. M., and Koenigsberger, R., 1980, Proc. Natl. Acad. Sci. U.S.A. 77: 6234–6238.PubMedCrossRefGoogle Scholar
  59. 59.
    Koenigsberger, R., and Parsons, S., 1980, Biochem. Biophys. Res. Commun. 94: 305–312.PubMedCrossRefGoogle Scholar
  60. 60.
    Breer, H., Morris, S. J., and Whittaker, V. P., 1977, Eur. J. Biochem. 80: 313–318.PubMedCrossRefGoogle Scholar
  61. 61.
    Rothlein, J. E., and Parsons, S. M., 1979, Biochem. Biophys. Res. Commun. 88: 1069–1076.PubMedCrossRefGoogle Scholar
  62. 62.
    Krebs, H. A., and Veech, R. L., 1969, Advances in Enzyme Regulation, Volume 7 (G. Weber, ed.), Pergamon Press, Oxford, pp. 397–413.Google Scholar
  63. 63.
    Siesjö, B. K., and Berntman, L., 1979, Adv. Neurol. 26: 319–323.PubMedGoogle Scholar
  64. 64.
    Greenbaum, A. L., Gumma, K. A., and McLean, P., 1971, Arch. Biochem. Biophys. 143: 617–663.PubMedCrossRefGoogle Scholar
  65. 65.
    Williamson, D. H., Lund, P., and Krebs, H. A., 1967, Biochem. J. 103: 514–527.PubMedGoogle Scholar
  66. 66.
    Lai, F. M., and Miller, A. T., 1973, Comp. Biochem. Physiol. [BJ 44: 829–835.CrossRefGoogle Scholar
  67. 67.
    Siesjö, B. K., and Nilsson, L., 1971, Scand. J. Clin. Lab. Invest. 27: 83–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosenthal, M., LaManna, J. C., Jobsis, F. F., Levassew, J. E., Kontos, H. A., and Patterson, J. L., 1976, Brain Res. 108: 143–154.PubMedCrossRefGoogle Scholar
  69. 69.
    Miller, A. L., Hawkins, R. A., and Veech, R. L., 1973, J. Neurochem. 20: 1393–1400.PubMedCrossRefGoogle Scholar
  70. 70.
    Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, United Kingdom.Google Scholar
  71. 71.
    Blass, J. P., and Gibson, G. E., 1979, Adv. Neurol. 26: 229–254.PubMedGoogle Scholar
  72. 72.
    Fishkum, G., and Lehninger, A. L., 1980, Fed. Proc. 39: 2432–2436.Google Scholar
  73. 73.
    Harpur, R. P., and Quastel, J. H., 1949, Nature 164: 779–782.PubMedCrossRefGoogle Scholar
  74. 74.
    Fisher, D. B., and Kaurman, S., 1972, J. Neurochem. 19: 1359–1366.PubMedCrossRefGoogle Scholar
  75. 75.
    Lubbers, D. W., 1968, Oxygen Transport In Blood and Tissue (D. W. Lubbers, U. P. Luft, G. C. Thews, and E. Witzleb, Eds.), Georg Thieme, Stuttgart, pp. 124–139.Google Scholar
  76. 76.
    Johnson, R. G., Carlson, N. J., and Scarpa, A., 1978, J. Biol. Chem. 253: 1512–1521.PubMedGoogle Scholar
  77. 77.
    Holz, R. W., 1978, Proc. Natl. Acad. Sei. U.S.A. 75: 5190–5194.CrossRefGoogle Scholar
  78. 78.
    Smith, A. D., 1979, The Release of Catecholamines from Adrenergic Neurons (D. M. Paton, ed.), Pergamon Press, New York, pp. 1–17.Google Scholar
  79. 79.
    Gaitonde, M. K., Dahl, D. R., and Elliot, K. A. C., 1965, Biochem. J. 94: 345–352.PubMedGoogle Scholar
  80. 80.
    Clarke, D. D., Nicklas, W. J., and Berl, S., 1970, Biochem. J. 120: 345–351.PubMedGoogle Scholar
  81. 81.
    Patel, A., and Koenig, H., 1971, J. Neurochem. 18: 621–628.PubMedCrossRefGoogle Scholar
  82. 82.
    Cheng, S. C., Kumar, S., and Casella, G. A., 1972, Brain Res. 42: 112–128.CrossRefGoogle Scholar
  83. 83.
    Gibson, G. E., Peterson, C., and Sansone, J., 1981, J. Neurochem. 37: 192–201.PubMedCrossRefGoogle Scholar
  84. 84.
    Plum, F., and Posner, J. B., 1980, The Diagnosis of Stupor and Coma, 3rd ed., F. A. Davis, Philadelphia.Google Scholar
  85. 85.
    Stevens, H., 1937, J. Comp. Psychol 24: 441–458.CrossRefGoogle Scholar
  86. 86.
    Quastel, J. H., 1978, Cholinergic Mechanisms and Psychopharmacology (D. J. Jenden, ed.), Plenum Press, New York, pp. 411–430.CrossRefGoogle Scholar
  87. 87.
    Drachman, D. A., 1978, Psychopharmacology: A Generation of Progress (M. A. Lipton, A. DiMascio, and K. F. Killam, Eds.), Raven Press, New York, pp. 651–662.Google Scholar
  88. 88.
    Seremin, A. M. E., and Scremin, O. U., 1979, Stroke 10: 142–143.CrossRefGoogle Scholar
  89. 89.
    Dolivo, M., 1974, Fed. Proc. 33: 1043–1048.PubMedGoogle Scholar
  90. 90.
    Perri, V., Sacchi, O., and Casella, C., 1970, Q. J. Exp. Physiol. 55: 25–35.Google Scholar
  91. 91.
    Luft, U. C., 1965, Handbook of Physiology, Volume II, Section 3: Respiration (W. O. Fenn and H. Rahn, Eds.), American Physiological Society, Washington, pp. 1099–1145.Google Scholar
  92. 92.
    Gibson, G. E., Pulsinelli, W. A., Blass, J. P., and Duffy, T. E., 1981, Am. J. Med. 70: 1247–1253.PubMedCrossRefGoogle Scholar
  93. 93.
    Cohen, P., Alexander, S., Smith, R., Reivich, M., and Wollman, H., 1967, J. Appl. Physiol. 23: 183–189.PubMedGoogle Scholar
  94. 95.
    Welsh, J. H., 1943, J. Neurophysiol. 6: 329–336.Google Scholar
  95. 96.
    Cortell, R., Feldman, J., and Gellhorn, E., 1941, Am. J. Physiol. 132: 588–593.Google Scholar
  96. 97.
    Macintosh, F. C., 1939, J. Physiol. (Lond.) 96: 16 P.Google Scholar
  97. 98.
    Gibson, G. E., Shimada, M., and Blass, J. P., 1978, J. Neurochem. 31: 757–760.PubMedCrossRefGoogle Scholar
  98. 99.
    Gibson, G. E., Shimada, M., and Blass, J. P., 1979, Biochem. Pharmacol. 28: 747–750.PubMedCrossRefGoogle Scholar
  99. 100.
    Yoshino, Y., and Elliot, K. A. C., 1970, Can. J. Biochem. 48: 228–235.PubMedCrossRefGoogle Scholar
  100. 101.
    Davis, J. N., and Carlsson, A., 1973, J. Neurochem. 20: 913–915.PubMedCrossRefGoogle Scholar
  101. 102.
    Davis, J. N., Girón, L. T., Staton, E., and Maury, W., 1979, Adv. Neurol. 26: 319–323.Google Scholar
  102. 103.
    Folbergrova, J., Nilsson, B., Sakabe, T., and Siesjo, B., 1981, J. Neurochem. 36: 1670–1674.CrossRefGoogle Scholar
  103. 104.
    Gorell, J. M., Navarro, C. P., and Schwendner, S. P. W., 1981, Neurochem. 36: 321–324.CrossRefGoogle Scholar
  104. 105.
    Kinnersley, H. W., and Peters, P. A., 1929, Biochem. J. 23: 1126–1136.PubMedGoogle Scholar
  105. 106.
    Lissak, K., Kovacs, T., and Nagy, E. K., 1943, Arch. Ges. Physiol. 247: 124–131.CrossRefGoogle Scholar
  106. 107.
    Vorhees, C. V., Schmidt, D. E., and Barrett, R. J., 1978, Brain Res. Bull. 3: 493–496.PubMedCrossRefGoogle Scholar
  107. 108.
    Barclay, L. L., Gibson, G. E., and Blass, J. P., 1981, J. Pharmacol. Exp. Ther. 217: 537–543.PubMedGoogle Scholar
  108. 109.
    Gibson, G. E., Barclay, L. L., and Blass, J. P., 1982, Ann. N.Y. Acad. Sci. 378: 382–403.PubMedCrossRefGoogle Scholar
  109. 110.
    Cheney, D. L., Gubler, C. J., and Jaussi, A. W., 1969, J. Neurochem. 16: 1283–1291.PubMedCrossRefGoogle Scholar
  110. 111.
    Vorhees, C. V., Schmidt, D. E., Barrett, R. J., and Schenker, S., 1977, J. Nutr. 107: 1902–1908.PubMedGoogle Scholar
  111. 112.
    Mann, P. J. G., and Quastel, J. H., 1940, Nature 145: 856–857.CrossRefGoogle Scholar
  112. 113.
    Bhagat, B., and Lockett, M. F., 1962, J. Pharm. Pharmacol. 14: 37–40.PubMedCrossRefGoogle Scholar
  113. 114.
    Sacchi, O., Consolo, S., Peri, I., Prigioni, S., Ladinsky, H., and Perri, V., 1978, Brain Res. 151: 443–456.PubMedCrossRefGoogle Scholar
  114. 115.
    Sacchi, O., Ladinsky, H., Prigione, I., Consolo, S., Peri, G., and Perri, V., 1978, Brain Res. 151: 609–614.PubMedCrossRefGoogle Scholar
  115. 116.
    Heinrich, C. P., Stadler, H., and Weiser, H., 1973, J. Neurochem. 21: 1273–1281.PubMedCrossRefGoogle Scholar
  116. 117.
    Plaitakis, A., Nicklas, W., and Berl, S., 1978, Neurology (Minneap.) 28: 691–698.CrossRefGoogle Scholar
  117. 118.
    Dreyfus, P. M., and Hauser, G., 1965, Biochim. Biophys. Acta 104: 78–84.PubMedCrossRefGoogle Scholar
  118. 119.
    Reinauer, H., Frassow, G., and Hollman, S., 1968, Hoppe Seylers Z. Physiol. Chem. 349: 969–978.PubMedCrossRefGoogle Scholar
  119. 120.
    Takahashi, K., Nakamura, A., and Nose, Y., 1971, J. Vitaminol. 17: 207–274.CrossRefGoogle Scholar
  120. 121.
    Gubler, C. J., 1961, J. Biol. Chem. 236: 3112–3120.PubMedGoogle Scholar
  121. 122.
    Bennett, C. D., Jones, J. H., and Nelson, J., 1966, J. Neurochem. 13: 449–459.CrossRefGoogle Scholar
  122. 123.
    Holowach, J., Kauffman, F., Ikossi, M. G., Thomas, C., and McDougal, D. B., 1968, J. Neurochem. 15: 621–631.PubMedCrossRefGoogle Scholar
  123. 124.
    Reynolds, S. F., and Blass, J. P., 1975, J. Neurochem. 24: 185–186.PubMedCrossRefGoogle Scholar
  124. 125.
    Barclay, L. L., Gibson, G. E., and Blass, J. P., 1981, Pharmacol Biochem. Behav. 14: 153–157.PubMedCrossRefGoogle Scholar
  125. 126.
    Gaitonde, M. K., and Nixey, R. W. K., 1974, J. Neurochem. 22: 53–61.PubMedCrossRefGoogle Scholar
  126. 127.
    Gaitonde, M. K., Fayein, N. A., and Johnson, A. L., 1975, J. Neurochem. 24: 1215–1223.PubMedCrossRefGoogle Scholar
  127. 128.
    Gubler, C. J., Adams, B. L., Hammond, B., Yaun, E. C., Guo, S. M., and Bennion, M., 1974, J. Neurochem. 22: 831–836.PubMedCrossRefGoogle Scholar
  128. 129.
    Koeppe, R. E., O’Neal, E. M., and Han, C. H., 1964, J. Neurochem. 11: 695–699.PubMedCrossRefGoogle Scholar
  129. 130.
    Chan-Palay, V., 1977, J. Comp. Neurol. 176: 463–494.CrossRefGoogle Scholar
  130. 131.
    Chan-Palay, V., Plaitakis, A., Nicklas, W., and Berl, S., 1977, Brain Res. 138: 380–384.PubMedCrossRefGoogle Scholar
  131. 132.
    Iwata, H., 1976, J. Nutr. Sci. Vitaminol. 22 (Suppl): 25–27.PubMedCrossRefGoogle Scholar
  132. 133.
    Siesjö, B. K., 1978, Brain Energy Metabolism, John Wiley amp; Sons, New York.Google Scholar
  133. 134.
    Blass, J. P., 1982, The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Weingaarden, D. S. Fredriekson, J. Goldstein, and M. Brown, Eds.), McGraw-Hill, New York (in press).Google Scholar
  134. 135.
    Kark, R. A. P., Blass, J. P., and Spence, M. A., 1977, Neurology (Minneap .) 27:70–72.Google Scholar
  135. 136.
    Livingstone, J. R., and Mastaglia, F. L., 1979, Br. Med. J. 2: 939.PubMedCrossRefGoogle Scholar
  136. 137.
    Barbeau, A., 1978, Can. J. Neurol. Sci. 5: 157–160.PubMedGoogle Scholar
  137. 138.
    Stanbury, J. B., Wyngaarden, J. B., and Frederickson, D., 1972, The Metabolic Basis of Inherited Disease, 3rd ed., McGraw-Hill, New York.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Gary E. Gibson
    • 1
  • John P. Blass
    • 1
  1. 1.Department of NeurologyCornell University Medical College, Burke Rehabilitation CenterWhite PlainsUSA

Personalised recommendations