Advertisement

Abstract

Glutamine (Gin) is one of the dominant amino acids in the brain, and the Gin family, consisting of Gin, Glu, Asp, and GABA, constitutes 70–80% of the free amino acid nitrogen in mammalian brain.1 The content of Gin, Glu, and GABA in various brain areas is shown in Table I. The Gin concentration is always lower than that of Glu and higher than that of GABA. The concentration varies greatly from one animal species to another, being highest in the dog and lowest in the rat. It should, however, be kept in mind that the measurements were done by different investigators, which may partly explain the variation. Thus, Bradford and Thomas2 found 3.0, 8.6, and 1.2 μmol/g wet wt. of rat cerebral cortex for Gin, Glu, and GABA, respectively, which are higher than the figures of Gründig and Hanbauer.3 Similar values for rat brain cortex to those reported by Bradford and Thomas2 were found by others,4,5, and they did not differ very much from those of guinea pig brain.6 In human cortex cerebri, Robinson and Williams7 found values within the same range for Gin and Glu as Perry et al.8 As shown in Table I, the concentration of Gin, Glu, and GABA appears to be remarkably constant for different brain areas within the same species, as is the sum of these amino acids. This might indicate that the amino acids in question are interrelated. Wiechert and Göllnitz9 found, however, lower values for the three amino acids in dog medulla than in brain. In the dorsal root, Gin tends to be higher than Glu, which has been explained by low glutaminase activity.11–13

Keywords

Glutamine Synthetase Kainic Acid Maple Syrup Urine Disease Carbamyl Phosphate Brain Cortex Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Timiras, P. S., Hudson, D. B., and Oklund, S., 1973, Prog. Brain Res. 40: 267–275.PubMedCrossRefGoogle Scholar
  2. 2.
    Bradford, H. F., and Thomas, A. J., 1969, J. Neurochem. 16: 1495–1504.PubMedCrossRefGoogle Scholar
  3. 3.
    Gründig, E., and Hanbauer, I., 1970, J. Neurochem. 17: 215–220.PubMedCrossRefGoogle Scholar
  4. 4.
    Kandera, J., Levi, G., and Lajtha, A., 1968, Arch. Biochem. Biophys. 126: 249–260.PubMedCrossRefGoogle Scholar
  5. 5.
    Sytinsky, I. A., Guzikov, B. M., Gomanko, M. V., Eremin, V. P., and Konovalova, N. N., 1975, J. Neurochem. 25: 43–48.PubMedCrossRefGoogle Scholar
  6. 6.
    Mangan, J. L., and Whittaker, V. P., 1966, Biochem. J. 98: 128–137.PubMedGoogle Scholar
  7. 7.
    Robinson, N., and Williams, C. B., 1965, Clin. Chim. Acta 12: 311–317.CrossRefGoogle Scholar
  8. 8.
    Perry, T. L., Berry, K., Hansen, S., Diamond, S., and Mok, C., 1971, J. Neurochem. 18:513–519.Google Scholar
  9. 9.
    Wiechert, P., and Göllnitz, G., 1970, J. Neurochem. 17: 137–147.PubMedCrossRefGoogle Scholar
  10. 10.
    Kontro, P., Marnela, K.-M., and Oja, S. S., 1980, Brain Res. 184: 129–141.PubMedCrossRefGoogle Scholar
  11. 11.
    Duggan, A. W., Johnston, G. A. R., 1970, J. Neurochem. 17: 1205–1208.PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson, J. L., and Aprison, M. H., 1970, Brain Res. 24: 285–292.PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson, J. L., 1974, Brain Res.69: 366–369.PubMedCrossRefGoogle Scholar
  14. 14.
    Kvamme, E., and Lenda, K., 1981, Neurosci. Lett. 25: 193–198.PubMedCrossRefGoogle Scholar
  15. 15.
    Geddes, J. W., Newstead, J. D., and Wood, J. D., 1980, Neurochem. Res. 5: 1107–1116.PubMedCrossRefGoogle Scholar
  16. 16.
    De Belleroche, J. S., and Bradford, H. F., 1973, J. Neurochem. 21: 441–451.PubMedCrossRefGoogle Scholar
  17. 17.
    Lähdesmäki, P., Karppinen, A., Saarai, H., and Winter, R., 1977, Brain Res. 138: 295–308.PubMedCrossRefGoogle Scholar
  18. 18.
    Van Gelder, N. M, 1978, Can. J. Physiol. Pharmacol. 56: 362–374.Google Scholar
  19. 19.
    Agrawal, H. C., Davis, J. M., and Himwich, W. A., 1966, J. Neurochem. 13: 607–615.Google Scholar
  20. 20.
    Agrawal, H. C., Davis, J. M., and Himwich, W. A., 1967, Brain Res. 3: 374–380.PubMedCrossRefGoogle Scholar
  21. 21.
    Agrawal, H. C., Davis, J. M., and Himwich, W. A., 1968, J. Neurochem. 15: 917–923.PubMedCrossRefGoogle Scholar
  22. 22.
    Berl, S., and Purpura, D. P., 1966, J. Neurochem. 13: 293–304.CrossRefGoogle Scholar
  23. 23.
    Dravid, A. R., Himwich, W. A., and Davis, J. M., 1965, J. Neurochem. 12: 901–906.PubMedCrossRefGoogle Scholar
  24. 24.
    Folch-Pi, J., 1955, Biochemistry of the Nervous System (H. Waeisch, ed.), Academic Press, New York, pp. 121–136.Google Scholar
  25. 25.
    Kirzinger, S. S., and Fonda, M. L., 1978, Exp. Gerontol. 13: 255–261.PubMedCrossRefGoogle Scholar
  26. 26.
    Weyne, J., Van Leuven, F., and Leusen, I., 1973, Life Sci. 12: 211–218.CrossRefGoogle Scholar
  27. 27.
    Prasad, C., and Agarwal, K. N., 1980, J. Neurochem. 34: 1270–1273.PubMedCrossRefGoogle Scholar
  28. 28.
    Hamel, E., Butterworth, R. F., and Barbeau, A., 1979, J. Neurochem. 33: 575–577.PubMedCrossRefGoogle Scholar
  29. 29.
    Roach, M. K., and Reese, W. N., Jr., 1972, Biochem. Pharmacol. 21: 2013–2019.PubMedCrossRefGoogle Scholar
  30. 30.
    Butterworth, R. F., Landreville, F., Hamel, E., Merkel, A., Giguere, F., and Barbeau, A., 1980, J. Can. Sci. Neurol. 7: 447–450.Google Scholar
  31. 31.
    Waeisch, H., 1960, Structure and Function of the Cerebral Cortex (D. B. Tower, and J. P. Schade, Eds.), Elsevier, Amsterdam, pp. 313–326.Google Scholar
  32. 32.
    Baläzs, R., Machiyama, Y., Hammond, B. J., Julian, T., and Richter, D., 1970, Biochem. J. 116: 445–467.PubMedGoogle Scholar
  33. 33.
    Benjamin, A. M., and Quastel, J. H., 1972, Biochem. J. 128: 631–646.PubMedGoogle Scholar
  34. 34.
    Van den Berg, C. F., Matheson, D. F., Ronda, G., Reijnierse, G. L. A., Blokhuis, G. G. D., Kroon, M. C., Clarke, D. D., and Garfinkel, D., 1975, Metabolic Compartmentation and Neurotransmission (S. Berl, D. D. Clarke, and D. Schneider, Eds.), Plenum Press, New York, pp. 515–543.CrossRefGoogle Scholar
  35. 35.
    Schwerin, P., Bessman, S. P., and Waeisch, H., 1950, J. Biol. Chem. 184: 37–44.PubMedGoogle Scholar
  36. 36.
    Dobkin, J., 1972, J. Neurochem. 19: 1195–1202.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Neal, R. M., and Koeppe, R. E., 1966, J. Neurochem. 13: 835–847.PubMedCrossRefGoogle Scholar
  38. 38.
    Berl, S., Takagaki, G., Clarke, D. D., and Waeisch, H., 1962, J. Biol. Chem. 237: 2562–2569.PubMedGoogle Scholar
  39. 39.
    Lajtha, A., and Toth, J., 1962, J. Neurochem. 9: 199–212.PubMedCrossRefGoogle Scholar
  40. 40.
    Levi, G., Blasberg, R., and Lajtha, A., 1966, Arch. Biochem. Biophys. 114: 339–351.CrossRefGoogle Scholar
  41. 41.
    Abdul-Ghani, A.-S., Marton, M., and Dobkin, J., 1978, J. Neurochem. 31: 541–546.PubMedCrossRefGoogle Scholar
  42. 42.
    Kilberg, M. S., Handlogten, M. E., and Christensen, H. N., 1980, J. Biol. Chem. 255: 4011–4019.Google Scholar
  43. 43.
    Simpson, D. P., 1980, J. Biol. Chem. 255: 7123–7128.Google Scholar
  44. 44.
    Alleyne, G. A. O., McFarlane Anderson, N., and Scott, B., 1980, Int. J. Biochem. 12: 99–102.Google Scholar
  45. 45.
    Cohen, S. R., and Lajtha, A., 1972, Handbook of Neurochemistry, Volume 7 ( A. Lajtha, ed.), Plenum Press, New York, pp. 543–572.Google Scholar
  46. 46.
    Benjamin, A. M., Veijee, Z. H., and Quastel, J. H., 1980, J. Neurochem. 35: 67–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Walum, E., and Weiler, C., 1978, Proc. Eur. Soc. Neurochem. 1: 499.Google Scholar
  48. 48.
    Weiler, C. T., Nyström, B., and Hamberger, A., 1979, J. Neurochem. 32: 559–565.PubMedCrossRefGoogle Scholar
  49. 49.
    Balcar, V. J., and Hauser, K. L., 1978, Proc. Eur. Soc. Neurochem. 1: 498.Google Scholar
  50. 50.
    Schousboe, A., Hertz, L., Svenneby, G., and Kvamme, E., 1979, J. Neurochem. 32: 943–950.Google Scholar
  51. 51.
    Baldessarini, R. J., and Yorke, C., 1974, J. Neurochem. 23: 839–848.PubMedCrossRefGoogle Scholar
  52. 52.
    Balcar, V. J., and Johnston, G. A. R., 1975, J. Neurochem. 24: 875–879.PubMedCrossRefGoogle Scholar
  53. 53.
    Roberts, P. J., and Keen, P., 1974, Brain Res. 76: 352–357.CrossRefGoogle Scholar
  54. 54.
    Roberts, P. J., 1976, Adv. Exp. Med. Biol. 69: 165–178.Google Scholar
  55. 55.
    Hertz, L., 1979, Prog. Neurobiol. 13: 277–323.PubMedCrossRefGoogle Scholar
  56. 56.
    Gjessing, L. R., Gjesdahl, P., and Sjaastad, O., 1972, J. Neurochem. 19: 1807–1808.PubMedCrossRefGoogle Scholar
  57. 57.
    Johnson, J. L., 1978, Prog. Neurobiol. 10: 155–202.PubMedCrossRefGoogle Scholar
  58. 58.
    Welbourae, T. C., 1980, Eur. J. Appl. Physiol 45: 185–188.CrossRefGoogle Scholar
  59. 59.
    Bito, L., Davison, H., Levin, E., Murray, M., and Snider, N., 1966, J. Neurochem. 13: 1057–1067.Google Scholar
  60. 60.
    Crowshaw, K., Jessup, S. F., and Ramwell, P. W., 1967, Biochem. J. 103: 79–85.PubMedGoogle Scholar
  61. 61.
    Ehinger, B., 1977, Exp. Eye Res. 25: 221–234.PubMedCrossRefGoogle Scholar
  62. 62.
    Benjamin, A. M., Veijee, Z. H., and Quastel, J. H., 1980, J. Neurochem. 35: 78–87.PubMedCrossRefGoogle Scholar
  63. 63.
    Machiyama, Y., Baläzs, R., Hammond, B. J., Julian, T., and Richter, D., 1970, Biochem. J. 116: 469–481.PubMedGoogle Scholar
  64. 64.
    Shank, R. P., and Aprison, M. H., 1977, J. Neurochem. 28: 1189–1196.PubMedCrossRefGoogle Scholar
  65. 65.
    Clark, R. M., and Collins, G. G. S., 1976, J. Physiol. ( Lond. ) 262: 383–400.Google Scholar
  66. 66.
    Benjamin, A. M., and Quastel, J. H., 1977, Can. J. Physiol. Pharmacol. 55: 347–355.PubMedCrossRefGoogle Scholar
  67. 67.
    Arnfred, T., and Hertz, L., 1971, J. Neurochem. 18: 259–265.PubMedCrossRefGoogle Scholar
  68. 68.
    Tapia, R., and Gonzales, R. M., 1978, Neurosci. Lett. 10: 165–169.PubMedCrossRefGoogle Scholar
  69. 69.
    De Belleroche, J. S., and Bradford, H. F., 1972, J. Neurochem. 19: 585–602.PubMedCrossRefGoogle Scholar
  70. 70.
    Walum, E., 1979, Biochem. Biophys. Res. Commun. 88: 1271–1274.PubMedCrossRefGoogle Scholar
  71. 71.
    Pitts, R. F., Pilkington, L. A., MacLeod, M. B., and Leal-Pinto, E., 1972, J. Clin. Invest. 51: 557–565.PubMedCrossRefGoogle Scholar
  72. 72.
    Marliss, E. B., Aoki, T. T., Pozefsky, T., Most, A. S., and Cahill, G. F., Jr., 1971, J. Clin. Invest.50: 814–817.PubMedCrossRefGoogle Scholar
  73. 73.
    Windmueller, H. G., and Spaeth, A. E., 1980, J. Biol. Chem. 255: 107–112.PubMedGoogle Scholar
  74. 74.
    Rapoport, S., Rost, J., and Schultze, M., 1971, Eur. J. Biochem. 23: 166–170.PubMedCrossRefGoogle Scholar
  75. 75.
    Donnelly, M., and Scheffler, I. E., 1976, J. Cell. Physiol. 89: 39–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Lavietes, B. B., Regan, D. H., and Demopoulos, H. B., 1974, Proc. Natl. Acad. Sci. USA. 71: 3993–3997.PubMedCrossRefGoogle Scholar
  77. 77.
    Reitzer, L. J., Wice, B. M., and Kennell, D., 1979, J. Biol. Chem. 254: 2669–2676.PubMedGoogle Scholar
  78. 78.
    Lund, P., 1980, FEBS Lett. 117: K86–K92.PubMedCrossRefGoogle Scholar
  79. 79.
    Lai, J. C. K., and Clark, J. B„ 1976, Biochem. J. 154: 423–432.PubMedGoogle Scholar
  80. 80.
    Dennis, S. C., Lai, J. C. K., and Clark, J. B., 1977, Biochem. J. 164: 727–736.PubMedGoogle Scholar
  81. 81.
    Dennis, S. C., Land, J. M., and Clark, J. B., 1976, Biochem. J. 156: 323–331.PubMedGoogle Scholar
  82. 82.
    Brand, M. D., and Chappell, J. B., 1974, Biochem. J. 140: 205–210.PubMedGoogle Scholar
  83. 83.
    Bradford, H. F., Ward, H. K., and Thomas, A. J., 1978, J. Neurochem.30: 1453–1459.PubMedCrossRefGoogle Scholar
  84. 84.
    Bradford, H. F., and Ward, H. K., 1976, Brain Res. 110: 115–125.PubMedCrossRefGoogle Scholar
  85. 85.
    Gonda, O., and Quastel, J. H., 1962, Biochem. J. 84: 394–406.PubMedGoogle Scholar
  86. 86.
    Benjamin, A. M., and Quastel, J. H., 1974, J. Neurochem. 23: 457–464.PubMedCrossRefGoogle Scholar
  87. 87.
    Krebs, H. A., 1935, Biochem. J. 29: 1951–1969.PubMedGoogle Scholar
  88. 88.
    Reichelt, K. L., and Kvamme, E., 1967, J. Neurochem. 14: 987–996.PubMedCrossRefGoogle Scholar
  89. 89.
    Ronzio, R. A., Rowe, W. B., Wilk, S., and Meister, A., 1969, Biochemistry 8: 2670–2674.PubMedCrossRefGoogle Scholar
  90. 90.
    Haschemeyer, R. H., 1970, Adv. Enzymol. 33: 71–118.PubMedGoogle Scholar
  91. 91.
    Meister, A., 1974, The Enzymes, (Boyer, P. D., ed.) Volume 10, 3rd ed., Academic Press, New York, pp. 699–754.Google Scholar
  92. 92.
    Tate, S. S., and Meister, A., 1973, The Enzymes of Glutamine Metabolism (S. Prusiner and E. R. Stadtman, Eds.), Academic Press, New York, London, pp. 77–127.Google Scholar
  93. 93.
    Tatibana, M., and Ito, K., 1969, J. Biol. Chem. 244: 5403–5413.PubMedGoogle Scholar
  94. 94.
    Berl, S., 1966, Biochemistry 5: 916–922.PubMedCrossRefGoogle Scholar
  95. 95.
    Graham, L. T., Jr., and Aprison, M. H., 1969, J. Neurochem. 16: 559–566.PubMedCrossRefGoogle Scholar
  96. 96.
    Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 1967, J. Neurochem. 14: 465–472.PubMedCrossRefGoogle Scholar
  97. 97.
    Utley, J. D., 1964, Biochem. Pharmacol. 13: 1383–1392.PubMedCrossRefGoogle Scholar
  98. 98.
    Schousboe, A., Svenneby, G., and Hertz, L., 1977, J. Neurochem. 29: 999–1005.PubMedCrossRefGoogle Scholar
  99. 99.
    Awapara, J., and Seale, B., 1952, J. Biol. Chem. 194: 497–502.PubMedGoogle Scholar
  100. 100.
    Strominger, J. L., and Lowry, O. H., 1955, J. Biol. Chem. 213: 635–646.Google Scholar
  101. 101.
    Wu, C., 1963, Comp. Biochem. Physiol. 8: 335–351.Google Scholar
  102. 102.
    Van Gelder, N. M., 1974, Can. J. Physiol. Pharmacol. 52: 952–959.PubMedCrossRefGoogle Scholar
  103. 103.
    Waeisch, H., 1959, Proceedings of the Fourth International Congress of Biochemistry, Volume 3, Pergamon Press, London, pp. 36–45.Google Scholar
  104. 104.
    Salganieoff, L., and De Robertis, E., 1965, J. Neurochem. 12: 287–309.CrossRefGoogle Scholar
  105. 105.
    Benjamin, A. M., and Quastel, J. H., 1975, J. Neurochem. 25: 197–206.PubMedCrossRefGoogle Scholar
  106. 106.
    Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D., 1977, Science 195: 1356–1358.PubMedCrossRefGoogle Scholar
  107. 107.
    Norenberg, M. D., and Martinez-Hernandez, A., 1979, Brain Res. 161: 303–310.PubMedCrossRefGoogle Scholar
  108. 108.
    Norenberg, M., 1979, J. Histochem. Cytochem. 27: 756–762.PubMedCrossRefGoogle Scholar
  109. 109.
    Kornguth, S. E., Flangas, A. L., Siegel, F. L., Geison, R. L., O’Brien, J. F., Lamar, C., Jr., and Scott, G., 1971, J. Biol. Chem. 246: 1177–1184.PubMedGoogle Scholar
  110. 110.
    Dennis, S. C., Lai, J. C. K., and Clark, J. B., 1980, Brain Res. 197: 469–475.PubMedCrossRefGoogle Scholar
  111. 111.
    Nicklas, W. J., Duvoisin, R. C., and Berl, S., 1979, Brain Res. 167: 107–117.PubMedCrossRefGoogle Scholar
  112. 112.
    Nicklas, W. J., Nunez, R., Berl, S., and Duvoisin, R., 1979, J. Neurochem. 33: 839–844.PubMedCrossRefGoogle Scholar
  113. 113.
    Moscona, A. A., and Piddington, R., 1966, Biochim. Biophys. Acta 121: 409–411.PubMedCrossRefGoogle Scholar
  114. 114.
    Reif-Lehrer, L., and Amos, H., 1968, Biochem. J. 106: 425–430.PubMedGoogle Scholar
  115. 115.
    Kovacs, S. H., 1977, In Vitro 13: 24–30.PubMedCrossRefGoogle Scholar
  116. 116.
    Piddington, R., 1971, J. Exp. Zool. 177: 219–228.Google Scholar
  117. 117.
    Vaccaro, D. E., Leeman, S. E., and Reif-Lehrer, L., 1979, J. Neurochem. 33: 953–957.PubMedCrossRefGoogle Scholar
  118. 118.
    Juurlink, B. H. J., Schousboe, A., Jorgensen, O. S., and Hertz, L., 1981, J. Neurochem. 36: 136–142.PubMedCrossRefGoogle Scholar
  119. 119.
    Osborne, R. H., Duce, I. R., and Keen, P., 1976, J. Neurochem. 27: 1483–1488.PubMedCrossRefGoogle Scholar
  120. 120.
    Berl, S., Lajtha, A., and Waeisch, H., 1961, J. Neurochem. 7: 186–197.CrossRefGoogle Scholar
  121. 121.
    Reubi, J.-C., Van den Berg, C., and Cúenod, M., 1978, Neurosci. Lett. 10: 171–174.PubMedCrossRefGoogle Scholar
  122. 122.
    Tapia, R., and González, R. M., 1978, Neurosci. Lett. 10: 165–169.PubMedCrossRefGoogle Scholar
  123. 123.
    Hamberger, A. C., Chiang, G. H., Nylén, E. S., Scheff, S. W., and Cotman, C. W., 1979, Brain Res. 168: 513–530.PubMedCrossRefGoogle Scholar
  124. 124.
    Hamberger, A., Chiang, G. H., Sandoval, E., and Cotman, C. W., 1979, Brain Res. 168: 531–541.Google Scholar
  125. 125.
    Voaden, M. J., Lake, N., Marshall, J., and Moijaria, B., 1978, J. Neurochem.31: 1069–1076.PubMedCrossRefGoogle Scholar
  126. 126.
    Voaden, M. J., and Moijaria, B., 1980, J. Neurochem. 35: 95–99.PubMedCrossRefGoogle Scholar
  127. 127.
    Zieve, L., and Nicoloff, D. M., 1975, Annu. Rev. Med. 26: 143–157.Google Scholar
  128. 128.
    Hindfelt, B., and Siesjo, B. K., 1970, Life Sci. 9: 1021–1028.CrossRefGoogle Scholar
  129. 129.
    Colombo, J. P., Bachmann, C., Peheim, E., and Berüter, J., 1977, Enzyme 22: 399–406.PubMedGoogle Scholar
  130. 130.
    Sadasivudu, B., Indira Rao, T., and Radhnakrishna Murthy, C., 1977, Neurochem. Res. 2: 639–655.Google Scholar
  131. 131.
    Norenberg, M. D., 1976, Arch. Neurol. 33: 265–269.PubMedCrossRefGoogle Scholar
  132. 132.
    O’Neill, B. B., and O’Donovan, D. J., 1979, Biochem. Soc. Trans. 7: 35–36.Google Scholar
  133. 133.
    Benjamin, A. M., Okamoto, K., and Quastel, J. H., 1978, J. Neurochem. 30: 131–143.PubMedCrossRefGoogle Scholar
  134. 134.
    Hamberger, A., Hedquist, B., and Nyström, B., 1979, J. Neurochem. 33: 1295–1302.PubMedCrossRefGoogle Scholar
  135. 135.
    Reubi, J. C., Toggenburger, G., and Cuénod, M., 1980, J. Neurochem. 35: 1015–1017.PubMedCrossRefGoogle Scholar
  136. 136.
    Oppenheimer, S. B., Edidin, M., Orr, C. W., and Roseman, S., 1969, Proc. Natl. Acad. Sci. USA. 63: 1395–1402.PubMedCrossRefGoogle Scholar
  137. 137.
    Roux, H., and Murthy, M. R. V., 1975, J. Neurochem. 24: 1163–1172.PubMedCrossRefGoogle Scholar
  138. 138.
    Murthy, M. R. V., Thénot, J. P., and Roux, H., 1975, J. Neurochem. 24: 1173–1180.PubMedCrossRefGoogle Scholar
  139. 139.
    Brusilow, S., Valle, D. L., Batshaw, M. L., 1979, Lancet 2: 452–454.PubMedCrossRefGoogle Scholar
  140. 140.
    Brusilow, S., Tinker, J., and Batshaw, M. L., 1980, Science 207: 659–661.PubMedCrossRefGoogle Scholar
  141. 141.
    Dobkin, J., 1970, Neurochem. 17: 237–246.CrossRefGoogle Scholar
  142. 142.
    Wiechert, P., and Göllnitz, G., 1969, J. Neurochem. 16: 1007–1016.PubMedCrossRefGoogle Scholar
  143. 143.
    Bhaskar Rao, A., Joseph, P. K., Ramakrishna Rao, P., Rajan, R., and Ramakrishnan, S., 1978, Ind. J. Biochem. Biophys. 15: 308–310.Google Scholar
  144. 144.
    Berl, S., and Clarke, D. D., 1972, Brain Res. 36: 203–213.PubMedCrossRefGoogle Scholar
  145. 145.
    Kremzner, L. T., Berl, S., Stellar, S., and Coke, L. J., 1979, Adv. Neurol. 23: 537–547.Google Scholar
  146. 146.
    Gray, P. N., May, P. C., Mundy, L., and Elkins, J., 1980, Biochem. Biophys. Res. Commun. 95: 707–714.PubMedCrossRefGoogle Scholar
  147. 147.
    McGeer, E. G., and McGeer, P. L., 1976, Nature 263: 517–519.PubMedCrossRefGoogle Scholar
  148. 148.
    Nicklas, W. J., Krespan, B., and Berl, S., 1980, Eur. J. Pharmacol. 62: 209–213.PubMedCrossRefGoogle Scholar
  149. 149.
    McGeer, E. G., and McGeer, P. L., 1978, Neurochem. Res. 3: 501–517.PubMedCrossRefGoogle Scholar
  150. 150.
    Carter, C. J., 1981, Lancet 24: 782–783.CrossRefGoogle Scholar
  151. 151.
    Shank, R. P., and Aprison, M. H., 1981, Life Sci. 28: 837–842.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Elling Kvamme
    • 1
  1. 1.Neurochemical Laboratory, Preclinical MedicineOslo UniversityOsloNorway

Personalised recommendations