Advertisement

Glutamate

  • Richard P. Shank
  • Graham LeM Campbell

Abstract

For nearly 50 years glutamate has been among the most intensely investigated substances known to occur in CNS tissues. Probably no other substance has been investigated for so many different reasons. Interest in glutamate was motivated initially by the recognition that its concentration in the brain is appreciably higher than that in most other tissues. Quastel and Wheatley1 and Krebs2 provided the first evidence that glutamate is metabolically active in CNS tissues and suggested that glutamate may serve a role in intermediary metabolism. Weil-Malherbe devoted much of his career to investigating the function of glutamate in neural tissues, focusing primarily on the role of glutamate in ammonia detoxification.3,4 The early work of these biochemists stimulated clinical interest in glutamate, and in the 1940s a number of reports were published that indicated that glutamate might have a beneficial effect on several neurological disorders, including hypoglycemic coma, epilepsy, and mental retardation.4,5 Rigorous follow-up studies demonstrated that the beneficial effects were only marginal.4,5 Therefore, the therapeutic use of glutamate was discontinued.

Keywords

Glutamine Synthetase Nerve Terminal Citric Acid Cycle Pyruvate Carboxylase Glutamatergic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quastel, J. H., and Wheatley, A. H. M., 1932, Biochem. J. 26: 725–744.PubMedGoogle Scholar
  2. 2.
    Krebs, H. A., 1935, Biochem. J. 29: 1951–1969.PubMedGoogle Scholar
  3. 3.
    Sourkes, T. L., 1976, Neuropharmacology 15: 443–448.PubMedCrossRefGoogle Scholar
  4. 4.
    Weil-Malherbe, H., 1950, Physiol Rev. 30: 549–568.PubMedGoogle Scholar
  5. 5.
    Waeisch, H., 1951, Adv. Protein Chem. 6: 299–341.CrossRefGoogle Scholar
  6. 6.
    Beri, S., Lajtha, A., and Waeisch, H., 1961, J. Neurochem. 7: 186–197.CrossRefGoogle Scholar
  7. 7.
    Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1960, J. Physiol. (Lond.) 150: 656–682.Google Scholar
  8. 8.
    Van Harreveld, A., 1960, Inhibition in the Nervous System and Gamma Aminobutyric Acid (E. Roberts, C. F. Baxter, A. Van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, Eds.), Pergamon Press, New York, pp. 454–459.Google Scholar
  9. 9.
    Lucas, D. R., and Newhouse, J. P., 1957, Arch. Ophthalmol. 58: 193.CrossRefGoogle Scholar
  10. 10.
    Roberts, E., and Frankel, S., 1950, J. Biol. Chem. 187: 55–63.PubMedGoogle Scholar
  11. 11.
    Beloff-Chain, A., Cantanzaro, R., Chain, E. B., Masi, I., and Pocchiara, F., 1955, Proc. R. Soc. Lond. [Biol.] 144: 22–28.CrossRefGoogle Scholar
  12. 12.
    Oldendorf, W., 1971, Am. J. Physiol. 221: 1629–1639.PubMedGoogle Scholar
  13. 13.
    Gjessing, L. R., Gjeshahl, P., and Sjaastad, O., 1972, J. Neurochem. 19: 1807–1808.PubMedCrossRefGoogle Scholar
  14. 14.
    Olney, J. W., 1978, Kainic Acid as a Tool in Neurobiology (E. G. MeGeer, J. W. Olney, and P. L. MeGeer, Eds.), Raven Press, New York, pp. 95–121.Google Scholar
  15. 15.
    Yamaguchi, S., and Kimizuka, A., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 35–54.Google Scholar
  16. 16.
    Sehaumburg, H. A., Byck, R., Gerstl, R., and Mashman, J. H., 1969, Science 163: 826–828.CrossRefGoogle Scholar
  17. 17.
    Baläzs, R., and Haslam, R. J., 1965, Biochem. J. 94: 131–141.PubMedGoogle Scholar
  18. 18.
    Beri, S., and Clarke, D. D., 1969, Handbook of Neurochemistry, Volume 2 (A. Lajtha, Ed.), Plenum Press, New York, pp. 447–472.Google Scholar
  19. 19.
    Van den Berg, C. J., 1970, Handbook of Neurochemistry, Volume 3 (A. Lajtha, ed.), Plenum Press, New York, pp. 514–544.Google Scholar
  20. 20.
    Brand, M. D., and Chappel, J, B„ 1974, Biochem. J. 140: 205–210.PubMedGoogle Scholar
  21. 21.
    Dennis, S. C., and Clark, J. B., 1977, Biochem. J. 168: 521–527.PubMedGoogle Scholar
  22. 22.
    Dennis, S. C., and Clark, J. B., 1977, Biochem. J. 172: 155–162.Google Scholar
  23. 23.
    Kerpel-Fronius, S., Beck, D. P., and Von Korff, R, W., 1977, J. Neurochem. 28: 871–875.PubMedCrossRefGoogle Scholar
  24. 24.
    Minn, A., and Gayet, J., 1977, J. Neurochem. 29: 873–881.PubMedCrossRefGoogle Scholar
  25. 25.
    McCarthy, K. D., and DeVellis, J., 1980, J. Cell Biol. 85: 890–902.PubMedCrossRefGoogle Scholar
  26. 26.
    Altschular, R., Harmison, G., Neisen, G., Wenthold, R. J., and Fex, J., 1981, Proc. Natl. Acad. Sci. U.S.A. 78: 6553–6557.CrossRefGoogle Scholar
  27. 27.
    Curtis, D. R., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 163–175.Google Scholar
  28. 28.
    Watkins, J. C., 1978, Kainic Acid as a Tool in Neurobiology (E. G. McGeer, J. W. Olney, and P. L. McGeer, Eds.), Raven Press, New York, pp. 37–70.Google Scholar
  29. 29.
    Puil, E., 1981, Brain Res. Rev. 3: 229–322.CrossRefGoogle Scholar
  30. 30.
    Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. A., 1967, J. Neurochem. 14: 465–472.PubMedCrossRefGoogle Scholar
  31. 31.
    Davidoff, R. A., Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. A., 1967, J. Neurochem. 14: 1025–1031.PubMedCrossRefGoogle Scholar
  32. 32.
    Divac, I., Fonnum, F., and Storm-Mathisen, J., 1977, Nature 266: 377–378.PubMedCrossRefGoogle Scholar
  33. 33.
    McGeer, P. L., McGeer, E. G., Sherer, D., and Singh, K., 1977, Brain Res. 128: 369–373.PubMedCrossRefGoogle Scholar
  34. 34.
    Fonnum, F., Soreide, A., Kvale, I., Walker, J., and Walaas, I., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 29–41.Google Scholar
  35. 35.
    Baughman, R. W., and Gilbert, C. D., 1981, J. Neurosci. 1: 427–439.PubMedGoogle Scholar
  36. 36.
    Young, A. B., Bromberg, M. D., and Penney, J. B., Jr., 1981, J. Neurosci. 1: 241–249.PubMedGoogle Scholar
  37. 37.
    Fonnum, F., Storm-Mathisen, J., and Divac, I., 1981, Neuroscience 5: 863–873.CrossRefGoogle Scholar
  38. 38.
    Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S., and Cotman, C. W., 1976, Nature 260: 538–540.PubMedCrossRefGoogle Scholar
  39. 39.
    Storm-Mathisen, J., 1977, Brain Res. 120: 379–386.PubMedCrossRefGoogle Scholar
  40. 40.
    Crawford, I. L., and Connor, J. D., 1973, Nature 244: 442–443.PubMedCrossRefGoogle Scholar
  41. 41.
    Storm-Mathisen, J., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 43–55.Google Scholar
  42. 42.
    Nadler, J. V., White, W. F., Vaca, K. W., Perry, B. W., and Cotman, C. W., 1978, J. Neurochem. 31: 147–155.PubMedCrossRefGoogle Scholar
  43. 43.
    Moroni, F., Biamehi, C., Tanganelli, S., Moneti, G., and Beani, L., 1981, J. Neurochem. 36: 1691–1699.PubMedCrossRefGoogle Scholar
  44. 44.
    Rowlands, G. J., and Roberts, P. J., 1980, Exp. Brain Res. 39: 239–240.Google Scholar
  45. 45.
    Harvey, J. A. Scholfleld, C. N., Graham, L. T., Sr., and Aprison, M. A., 1975, J. Neurochem. 24: 445–449.Google Scholar
  46. 46.
    Bradford, H. F., and Richards, C. D., 1976, Brain Res. 105: 168–172.PubMedCrossRefGoogle Scholar
  47. 47.
    Nitsch, C., 1981, Adv. Biochem. Psychopharmacol. 29: 97–104.PubMedGoogle Scholar
  48. 48.
    Zaczek, R., Hedreen, J. C., and Coyle, J. T., 1979, Exp. Neurol. 65: 145–156.PubMedCrossRefGoogle Scholar
  49. 49.
    Collins, G. G., and G. A. Probett, 1981, Brain Res. 23: 231–234.CrossRefGoogle Scholar
  50. 50.
    Young, A. B., Oster-Granite, M. L., Herndon, R. M., and Snyder, S. H., 1974, Brain Res. 73: 1–13.PubMedCrossRefGoogle Scholar
  51. 51.
    McBride, W. J., Aprison, M. H., and Kusano, K., 1976, J. Neurochem. 26: 867–870.PubMedCrossRefGoogle Scholar
  52. 52.
    Rea, M. A., McBride, W. J., and Rohde, B. H., 1981, Neurochem. Res. 6: 33–39.PubMedCrossRefGoogle Scholar
  53. 53.
    Redburn, D. A., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 79–89.Google Scholar
  54. 54.
    Cuenod, M., Beaudet, A., Canzek, V., Streit, P., and Reubi, J. C., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 57–68.Google Scholar
  55. 55.
    Wenthold, R. J., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 69–78.Google Scholar
  56. 56.
    Reis, D. J., Granata, A. R., Perrone, M. H., and Talman, W. T., 1981, J. Auto. Nerv. Syst. 3: 321–324.CrossRefGoogle Scholar
  57. 57.
    Johnson, J. L., and Aprison, M. A., 1971, Brain Res. 26: 141–148.CrossRefGoogle Scholar
  58. 58.
    Berger, S. J., Carter, J. C., and Lowry, O. H., 1977, J. Neurochem. 28: 149–158.PubMedCrossRefGoogle Scholar
  59. 59.
    Kennedy, A. J., Neal, M. J., and Lolley, R. N., 1977, J. Neurochem. 29: 157–159.PubMedCrossRefGoogle Scholar
  60. 60.
    Fonnum, F., and Malthe-Sorenssen, D., 1981, Glutamate: Transmitter in the Central Nervous System (P. J. Roberts, J. Storm-Mathisen, Jr., and G. A. R. Johnston, Eds.), John Wiley & Sons, New York, pp. 205–222.Google Scholar
  61. 61.
    Cotman, C. W., and Nadler, J. V., 1981, Glutamate: Transmitter in the Central Nervous System (P. J. Roberts, J. Storm-Mathisen, Jr., and G. A. R. Johnston, Eds.), John Wiley & Sons, New York, pp. 117–154.Google Scholar
  62. 62.
    Baxter, C. F., 1970, Handbook of Neurochemistry, Volume 3 (A. Lajtha, ed.), Plenum Press, New York, pp. 289–353.Google Scholar
  63. 63.
    Seiler, N., and Eichentopf, B., 1975, Biochem. J. 152: 201–210.PubMedGoogle Scholar
  64. 64.
    Barber, R., Vaughn, J. E., Saito, K., McLaughlin, B. J., and Roberts, E., 1978, Brain Res. 141: 35–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Gaitonde, M. M., Dahl, D. R., and Elliott, K. A. C., 1965, Biochem. J. 94: 345–352.PubMedGoogle Scholar
  66. 66.
    Baläzs, R., Machiyama, Y., and Patel, A. J., 1973, Metabolic Compartmentation in the Brain (R. Baläzs and J. E. Cremer, Eds.), Macmillan, London, pp. 57–70.Google Scholar
  67. 67.
    Shank, R. P., and Aprison, M. H., 1971, J. Neurobiol. 2: 145–151.PubMedCrossRefGoogle Scholar
  68. 68.
    Van den Berg, C. J., Matheson, D. F., Nijenmanting, M. C., and Beuntink, R., 1982, Neurotransmitter Interaction and Compartmentation (H. Bradford, ed.), Plenum Press, New York (in press).Google Scholar
  69. 69.
    Hyde, J. C., and Robinson, N., 1976, Histochemistry 49: 51–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Shank, R. P., and Aprison, M. H., 1981, Life Sci. 28: 837–842.PubMedCrossRefGoogle Scholar
  71. 71.
    Shank, R. P., Campbell, G. LeM., Freytag, S. O., and Utter, M. F., 1981, Life Sci. 7: 936.Google Scholar
  72. 72.
    Costa, E., Guidotti, A., Moroni, A., and Peralta, E., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 151–161.Google Scholar
  73. 73.
    Shank, R. P., and Graham, L. T., Jr., 1978, Advances in Neurochemistry, Volume 3 ( B. Agranoff and M. H. Aprison, Eds.), Plenum Press, New York, pp. 165–201.Google Scholar
  74. 74.
    Lux, H. D., Loracher, C., and Neher, E., 1970, Exp. Brain Res. 11: 431–447.Google Scholar
  75. 75.
    Siesjo, B. K., 1978, Brain Energy Metabolism, John Wiley & Sons, New York.Google Scholar
  76. 76.
    Utley, J. D., 1964, Biochem. Pharmacol. 13: 1383–1392.PubMedCrossRefGoogle Scholar
  77. 77.
    Norenberg, M. D., 1979, J. Histochem. Cytochem. 27: 756–762.PubMedCrossRefGoogle Scholar
  78. 78.
    Hills, A. G., Reid, E. L., and Kerr, W. D., 1967, Am. J. Physiol. 223: 1470–1476.Google Scholar
  79. 79.
    Betz, A. L. and Gilboe, D. D., 1973, Am. J. Physiol. 224: 580–587.PubMedGoogle Scholar
  80. 80.
    Minard, F. N., and Richter, D., 1968, J. Neurochem. 15: 1463–1468.PubMedCrossRefGoogle Scholar
  81. 81.
    Wherrett, J. R., and Tower, D. B., 1971, J. Neurochem. 18: 1027–1042.PubMedCrossRefGoogle Scholar
  82. 82.
    Tower, D. B., and Wherret, J. R., 1971, J. Neurochem. 18: 1043–1051.PubMedCrossRefGoogle Scholar
  83. 83.
    Moore, B. W., 1965, Biochem Biophys. Res. Commun. 19: 739–744.Google Scholar
  84. 84.
    Kato, K., Suzuki, F., and Umeda, Y., 1981, J. Neurochem. 36: 793–797.PubMedCrossRefGoogle Scholar
  85. 85.
    Reichelt, K. L., 1970, J. Neurochem. 17: 19–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Meister, A., 1979, Glutamic acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 69–84.Google Scholar
  87. 87.
    Katunuma, N., Katsunuma, T., Towatari, T., Tornino, I., 1973, The Enzymes of Glutamine Metabolism (S. Prusiner and E. R. Stadtman, Eds.), Academic Press, New York, pp. 227–258.Google Scholar
  88. 88.
    Shank, R. P., and Campbell, G. LeM., 1981, Life Sci. 28: 843–850.PubMedCrossRefGoogle Scholar
  89. 89.
    Mcintosh, J. C., and Cooper, J. R., 1965, J. Neurochem. 12: 825–835.PubMedCrossRefGoogle Scholar
  90. 90.
    D’Adamo, A. F., Jr., and Yatsu, F. M., 1966, J. Neurochem. 13: 961–965.PubMedCrossRefGoogle Scholar
  91. 91.
    Potashner, S. J., 1978, J. Neurochem. 31: 177–186.PubMedCrossRefGoogle Scholar
  92. 92.
    Potashner, S. J., and Lake, N., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 139–145.Google Scholar
  93. 93.
    Cheng, S. C., 1971, Int. Rev. Neurobiol. 14: 125–157.PubMedCrossRefGoogle Scholar
  94. 94.
    Patel, M. S., 1974, J. Neurochem. 11: 887–898.Google Scholar
  95. 95.
    Shank, R. P., and Campbell, G. LeM., 1982, Trans. Am. Soc. Neurochem. 13: 264.Google Scholar
  96. 96.
    Shank, R. P., and Campbell, G. LeM., 1981, Trans. Am. Soc. Neurochem. 12: 376.Google Scholar
  97. 97.
    Shank, R. P., and Campbell, G. LeM., 1982, Neurochem. Res. 7: 601–615.PubMedCrossRefGoogle Scholar
  98. 98.
    Shank, R. P., and Aprison, M. H., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 139–150.Google Scholar
  99. 99.
    Quastel, J. H., 1974, Biochem. Soc. Trans. 2: 765–780.Google Scholar
  100. 100.
    Shank, R. P., and Aprison, M. H., 1977, J. Neurochem. 28: 1189–1196.PubMedCrossRefGoogle Scholar
  101. 101.
    Bradford, H. F., Ward, H. K., and Thomas, A. J., 1978, J. Neurochem. 30: 1453–1459.PubMedCrossRefGoogle Scholar
  102. 102.
    Hamberger, A. C., Chiang, G. H., Nylen, E. S., Scheff, S. W., and Cotman, C. W., 1979, Brain Res. 168: 513–530.PubMedCrossRefGoogle Scholar
  103. 103.
    Reubi, J. C., Van den Berg, C. J., and Cuenod, M., 1978, Neurosci. Lett. 10: 171–174.PubMedCrossRefGoogle Scholar
  104. 104.
    Tapia, R., and Gonzalez, R. M., 1978, Neurosci. Lett. 10: 165–169.PubMedCrossRefGoogle Scholar
  105. 105.
    Kemel, J. L., Gauchy, C., Glowinski, J., and Besson, M. J., 1979, Life Sci. 24: 2139–2150.PubMedCrossRefGoogle Scholar
  106. 106.
    Hertz, L., 1979, Prog. Neurobiol. 13: 277–323.PubMedCrossRefGoogle Scholar
  107. 107.
    McGeer, E. G., McGeer, P. L., and Hattorf, T., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., ed.), Raven Press, New York, pp. 187–201.Google Scholar
  108. 108.
    Benjamin, A. M., 1981, Brain Res. 208: 363–377.PubMedCrossRefGoogle Scholar
  109. 109.
    Roberts, E., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 91–102.Google Scholar
  110. 110.
    Wong, P. T., and McGeer, E. G., 1981, Brain Res. 227: 519–529.PubMedGoogle Scholar
  111. 111.
    Shank, R. P., and Campbell, G. LeM., 1983, J. Neurosci. Res. 9:(in press).Google Scholar
  112. 112.
    Cotman, G. W., Foster, A., and Lanthon, T., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 1–27.Google Scholar
  113. 113.
    Usherwood, P. N. R., 1978, Adv. Comp. Physiol. Biochem. 7: 227–310.PubMedCrossRefGoogle Scholar
  114. 114.
    Cutler, R. W. P., and Dudzinski, D. S., 1975, Brain Res. 8: 415–423.CrossRefGoogle Scholar
  115. 115.
    DeBelleroche, J. S., and Bradford, H. F., 1977, J. Neurochem. 29: 335–343.CrossRefGoogle Scholar
  116. 116.
    Garthwaite, J., and Baläzs, R., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 317–326.Google Scholar
  117. 117.
    Hosli, L., Andres, P. E., and Hosli, E., 1976, Pfluegers Arch. 363: 43–48.CrossRefGoogle Scholar
  118. 118.
    Johnston, G. A. R., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 177–186.Google Scholar
  119. 119.
    Michaelis, E. K., 1975, Biochem. Biophys. Res. Commun. 65: 1004–1012.PubMedCrossRefGoogle Scholar
  120. 120.
    Foster, A. C., and Roberts, P. J., 1978, J. Neurochem. 31: 1467–1477.PubMedCrossRefGoogle Scholar
  121. 121.
    Biziere, K., Thompson, H., and Coyle, J. T., 1980, Brain Res. 183: 421–433.PubMedCrossRefGoogle Scholar
  122. 122.
    Baudry, M., and Lynch, G., 1980, Proc. Natl. Acad. Sci. U.S.A. 77: 2298–2302.PubMedCrossRefGoogle Scholar
  123. 123.
    Vargas, F., and Costa, E., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 307–316.Google Scholar
  124. 124.
    Foster, A. C., Mena, E. E., Fagg, G. E., and Cotman, C. W., 1981, J. Neurosci. 1: 620–625.PubMedGoogle Scholar
  125. 125.
    Michaelis, E. K., 1979, Biochem. Biophys. Res. Commun. 87: 106–112.PubMedCrossRefGoogle Scholar
  126. 126.
    Hertz, L., 1979, Prog. Neurobiol. 13: 277–323.PubMedCrossRefGoogle Scholar
  127. 127.
    Schousboe, A., Int. Rev. Neurobiol. 22: 1–45.Google Scholar
  128. 128.
    Schousboe, A., and Hertz, L., 1981, Glutamate as a Neurotransmitter (G. Dichiara and G. L. Gessa, Eds.), Raven Press, New York, pp. 103–113.Google Scholar
  129. 129.
    Johnson, J. L., 1978, Prog. Neurobiol. 10: 155–202.PubMedCrossRefGoogle Scholar
  130. 130.
    Pardridge, W., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 125–138.Google Scholar
  131. 131.
    Fagg, C. E., and Lane, J. D., 1980, Neuroscience 4: 1015–1036.CrossRefGoogle Scholar
  132. 132.
    Shank, R. P., and Campbell, G. LeM. J. Neurosci., submitted.Google Scholar
  133. 133.
    Campbell, G. LeM., and Shank, R. P., 1978, Brain Res. 153: 618–622.PubMedCrossRefGoogle Scholar
  134. 134.
    Fagg, C. E., Jones, I. M., and Jordan, C. C., 1978, Neurosci. Lett. 9: 71–75.PubMedCrossRefGoogle Scholar
  135. 135.
    Raiteri, M., Federico, R., Coletti, A., and Levi, G., 1975, J. Neurochem. 24: 1243–1250.PubMedCrossRefGoogle Scholar
  136. 136.
    Johnston, G. A. R., 1976, Adv. Biochem. Psychopharmacol. 15: 175–184.PubMedGoogle Scholar
  137. 137.
    Shank, R. P., and Baxter, C. F., 1975, J. Neurochem. 24: 641–646.PubMedGoogle Scholar
  138. 138.
    Chee, P. Y., Dahl, J. L., and Fahien, L. A., 1979, J. Neurochem. 33: 53–60.PubMedCrossRefGoogle Scholar
  139. 139.
    Patel, A. J., Hunt, A., Tahourdin, C. S. M., Gordon, R. D., and Bunn, S., 1981, Life Sci. 7: 935.Google Scholar
  140. 140.
    Levi, G., Kandera, J., and Lajtha, A., 1967, Arch. Biochem. Biophys. 119: 303–311.PubMedCrossRefGoogle Scholar
  141. 141.
    Van den Berg, C. J., Reignierse, G. L. A., Blochuis, G. G. C., Krön, M. C., Ronda, G., Clarke, D. D., and Garfinkel, D., 1976, Metabolic Compartmentation and Neurotransmission—Relation to Brain Structure and Function (S. Beri, D. D. Clarke, and S. Schneider, Eds.), Plenum Press, New York, pp. 515–544.Google Scholar
  142. 142.
    Van den Berg, C. J., Matheson, D. F., and Nijenmanting, W. C., 1978, Amino Acids as Chemical Transmitters (F. Fonnum, ed.), Plenum Press, New York, pp. 709–723.CrossRefGoogle Scholar
  143. 143.
    Piddington, R., 1977, Brain Res. 128: 505–514.PubMedCrossRefGoogle Scholar
  144. 144.
    Ward, H. K., and Bradford, H. F., 1979, J. Neurochem. 33: 339–342.PubMedCrossRefGoogle Scholar
  145. 145.
    Weiler, C. T., Nystrom, B., and Hamberger, A., 1979, Brain Res. 160: 539–543.PubMedCrossRefGoogle Scholar
  146. 146.
    Cheng, S. C., 1973, Metabolic Compartmentation in the Brain (R. Baläzs and J. E. Cremer, Eds.), Macmillan, London, pp. 107–118.Google Scholar
  147. 147.
    Van Harreveld, A., and Fifkova, E., 1970, J. Neurobiol. 2: 213–229.Google Scholar
  148. 148.
    Munro, H., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York, pp. 55–68.Google Scholar
  149. 149.
    Kenny, R. A., 1979, Glutamic Acid: Advances in Biochemistry and Physiology (L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wurtman, Eds.), Raven Press, New York. pp. 363–374.Google Scholar
  150. 150.
    Heradon, R. M., and Coyle, J. T., 1978, Kainic Acid as a Tool in Neurobiology (E. G. McGeer, J. W. Olney, and P. L. McGeer, Eds.), Raven Press, New York, pp. 189–200.Google Scholar
  151. 151.
    Hampton, C. K., Garcia, C., and Redburn, D. A., 1981, J. Neurosci. Res. 6: 99–112.PubMedCrossRefGoogle Scholar
  152. 152.
    Olney, J. W., Rhee, V., and de Gubareff, T., 1977, Brain Res. 120: 151–157.Google Scholar
  153. 153.
    McGeer, E. G., McGeer, P. L., and Singh, K., 1978, Brain Res. 139: 381–383.PubMedCrossRefGoogle Scholar
  154. 154.
    McGeer, P. L., McGeer, E. G., and Hattorf, T., 1978, Kainic Acid as a Tool in Neurobiology (E. G. McGeer, J. W. Olney, and P. L. McGeer, Eds.), Raven Press, New York, pp. 123–138.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Richard P. Shank
    • 1
    • 2
  • Graham LeM Campbell
    • 1
    • 2
  1. 1.Department of NeurologyThe Graduate HospitalPhiladelphiaUSA
  2. 2.Department of PhysiologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations