Lipopolysaccharide Regulation of the Immune Response

Beneficial Effects on Lymphoreticular Cells and a Model for Their Activation by LPS
  • Katherine A. Gollahon
  • Suzanne M. Michalek
  • Michael J. Wannemuehler
  • Jerry R. McGhee


Bacterial endotoxin, which comprises a significant portion of the outer membrane of gram-negative bacteria, causes a large number of biological effects on a susceptible host such as man or the useful experimental animal, the mouse. When the classical phenol-water extraction method is employed to isolate endotoxin from the outer membrane of the gram-negative family Enterobacteriaceae, purified lipopolysaccharide (LPS) is obtained and this high-molecular-weight molecule exhibits most of the endotoxin-associated effects in the host (Morrison and Ryan, 1979). LPS is a potent immunomodulator and acts on lymphoreticular cells, e.g., B cells, macrophages (Mø), and T cells (Table 1). There is a growing body of evidence that suggests that LPS may exert all host biological effects, including toxic manifestations, via an interaction with lymphoreticular cells (Michalek et al., 1980b; Vogel and Mergenhagen, 1982). In this chapter, we will limit ourselves to LPS effects on lymphoreticular cells that would be beneficial and also occur in our natural host-parasite environment. We encounter LPS in significant amounts from our gram-negative gastrointestinal flora, and therefore, the LPS-lymphoreticular cell interaction probably first, and continually, occurs in gut-associated lymphoid tissue (GALT), e.g., Peyer’s patches.


Bacterial Endotoxin Mitogenic Response Spleen Cell Culture Cytoplasmic Receptor Germfree Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, W. H., Osunkoya, B. O., Takiguchi, T., and Smith, R. T., 1972, The interactions of mitogens with lymphoid cells and the effect of neuraminidase on the cells’ responsiveness to stimulation, Cell. Immunol. 3:590.PubMedCrossRefGoogle Scholar
  2. Ahmed, A., Smith, A. H., Kessler, S. W., and Scher, I., 1978, Ontogeny of murine B cell surface antigens and functions, in: Animal Models of Comparative and Developmental Aspects of Immunity and Disease (E. Gershwin and E. L. Cooper, eds.), pp. 175–200, Pergamon Press, New York.Google Scholar
  3. Andersson, J., Möller, G., and Sjöberg, O., 1972, Selective induction of DNA synthesis in B and T lymphocytes, Cell. Immunol. 4:381.PubMedCrossRefGoogle Scholar
  4. Babb, J. L., and McGhee, J. R., 1980, Mice refractory to LPS manifest high IgA responses to orally administered antigen, Infect. Immun. 29:322.PubMedGoogle Scholar
  5. Baxter, J. D., and Funder, J. W., 1979, Hormone receptors, N. Engl. J. Med. 301:1149.PubMedCrossRefGoogle Scholar
  6. Cebra, J. J., Gearhart, P. J., Kamat, R., Robertson, S. M., and Tseng, J., 1976, Origin and differentiation of lymphocytes involved in the secretory IgA response, Cold Spring Harbor Symp. Quant. Biol. 41:201.CrossRefGoogle Scholar
  7. Cebra, J. J., Gearhart, P. J., Halsey, J. F., Hurwitz, J. L., and Shahin, R. D., 1980, Role of environmental antigens in the ontogeny of the secretory immune response, J. Reticuloendothelial. Soc. 28:61s.Google Scholar
  8. Challacombe, S. J., and Tornasi, T. B., Jr., 1980, Systemic tolerance and secretory immunity after oral immunization, J. Exp. Med. 152:1459.PubMedCrossRefGoogle Scholar
  9. Chan, L., and O’Malley, B. W., 1978, Steroid hormone action: Recent advances, Ann. intern. Med. 89:694.PubMedGoogle Scholar
  10. Connett, J., and Fleischman, J. B., 1981, Non-histone chromosomal proteins from immu-noglobulin-producing mouse plasmacytoma cell, Mol. Immunol. 18:573.PubMedCrossRefGoogle Scholar
  11. Coutinho, A., Forni, L., and Watanabe, T., 1978, Genetic and functional characterization of an antiserum to the lipid A-specific triggering receptor on murine B lymphocytes, Eur. J. Immunol. 8:63.PubMedCrossRefGoogle Scholar
  12. Davies, M., Stewart-Tull, D. E. S., and Jackson, D. M., 1978, The binding of lipopolysac-charide from Escherichia coli to mammalian cell membranes and its effect on liposomes, Biochim. Biophys. Acta 508:260.PubMedCrossRefGoogle Scholar
  13. Decker, J. M., and Marchalonis, J. J., 1978, Molecular events in lymphocyte activation: Role of non-histone chromosomal proteins in regulating gene expression, Contemp. Top. Mol. Immunol. 7:365.PubMedGoogle Scholar
  14. Dumont, F., 1978, Bacterial lipopolysaccharide (LPS) enhances concanavalin A reactivity of thymocytes from the low-responder mouse strain C3H/HeJ, Experientia 34:125.PubMedCrossRefGoogle Scholar
  15. Englesberg, E., Squires, C., and Moronk, F., 1969, The L-arabinose operon in E. coli B/r: A genetic demonstration of two functional states of the product of a regulatory gene, Proc. Natl Acad. Sci. USA 62:1100.PubMedCrossRefGoogle Scholar
  16. Farber, J., Stein A., and Baserga, R., 1972, Regulation of RNA synthesis during mitosis, Biochem. Biophys. Res. Commun. 47:790.PubMedCrossRefGoogle Scholar
  17. Forbes, J. T., Nakao, Y., and Smith, R. T., 1975, T mitogens trigger LPS responsiveness in mouse thymus cells, J. Immunol. 114:1004.PubMedGoogle Scholar
  18. Gregory, S. H., Zimmerman, D. H., and Kern, M., 1980, The lipid A moiety of lipopolysaccharide is specifically bound to B cell subpopulations of responder and nonresponder animals, J. Immunol. 125:102.PubMedGoogle Scholar
  19. Hämmerling, U., Chin, A. F., Abbott, J., and Scheid, M. P., 1975, The ontogeny of murine B lymphocytes. I. Induction of phenotypic conversion of Ia- to Ia+ lymphocytes, J. Immunol. 115:1425.PubMedGoogle Scholar
  20. Hibbs, J. B., Jr., Taintor, R. R., Chapman, H. A., Jr., and Weinberg, J. B., 1977, Macrophage tumor killing: Influence of local environment, Science 197:279.PubMedCrossRefGoogle Scholar
  21. Hirata, F., Toyoshima, S., Axelrod, J., and Waxdal, M. J., 1980, Phospholipid methyl-ation: A biochemical signal modulating lymphocyte mitogenesis, Proc. Natl. Acad. Sci. USA 77:862.PubMedCrossRefGoogle Scholar
  22. Hoffmann, M. K., and Gilbert, K., 1980, Immune functions controlled by lipopolysaccha-ride-induced macrophage factor (IL-1), in: Microbiology 1980 (D. Schlessinger, ed.), pp. 55–60, American Society for Microbiology, Washington, D.C.Google Scholar
  23. Horton, M. A., and Hetherington, C. M., 1980, Genetic linkage of Ly-6 and Thy-1 loci in the mouse, Immunogenetics 11:521.PubMedCrossRefGoogle Scholar
  24. Howe, R. C., Ahmed, A., Faldetta, T. J., Byrnes, J. E., Rogan, K. M., Dorf, M. E., Taylor, B. A., and Humphreys, R. E., 1979, Mapping of the Lyb-4 gene to different chromosomes in the DBA/2J and C3H/HeJ mice, Immunogenetics 9:221.CrossRefGoogle Scholar
  25. Jensen, S. B., Mergenhagen, S. E., Fitzgerald, R. J., and Jordan, H. V., 1963, Susceptibility of conventional and germfree mice to lethal effects of endotoxin, Proc. Soc. Exp. Biol. Med. 113:710.Google Scholar
  26. Kabir, S., and Rosenstreich, D. L., 1977, Binding of bacterial endotoxin to murine spleen lymphocytes, Infect. Immun. 15:156.PubMedGoogle Scholar
  27. Kiyono, H., McGhee, J. R., and Michalek, S. M., 1980a, Lipopolysaccharide regulation of the immune response: Comparison of responses to LPS in germfree, Escherichia coli-monoassociated and conventional mice, J. Immunol. 124:36.PubMedGoogle Scholar
  28. Kiyono, H., Babb, J. L., Michalek, S. M., and McGhee, J. R., 1980b, Cellular basis for elevated IgA responses in C3H/HeJ mice, J. Immunol. 125:732.PubMedGoogle Scholar
  29. Kurland, J. I., and Bockman, R., 1978, Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages, J. Exp. Med. 147:952.PubMedCrossRefGoogle Scholar
  30. Lee, N., 1978, Molecular aspects of ara regulation, in: The Operon (J. H. Miller and W. S. Riznekoff, eds.), pp. 389–410, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  31. McGhee, J. R., and Michalek, S. M., 1981, Immunobiology of dental caries: Microbial aspects and local immunity, Annu. Rev. Microbiol. 35:595.PubMedCrossRefGoogle Scholar
  32. McGhee, J. R., Kiyono, H., Michalek, S. M., Babb, J. L., Rosenstreich, D. L., and Mergenhagen, S. E., 1980, Lipopolysaccharide (LPS) regulation of the immune response: T lymphocytes from normal mice suppress mitogenic and immunogenic responses to LPS, J. Immunol. 124:1603.PubMedGoogle Scholar
  33. McGhee, J. R., Michalek, S. M., Kiyono, H., Babb, J. L., Clark, M. P., and Mosteller, L. M., 1981, LPS regulation of the IgA immune response, in: Mechanisms in Mucosal Immunity (L. A. Hanson and W. Strober, eds.), pp. 55–72, Raven Press, New York.Google Scholar
  34. McKenzie, I. F. C., and Potter, T., 1979, Murine lymphocyte surface antigens, Adv. Immunol. 27:181.Google Scholar
  35. Mertin, J., and Stackpoole, A., 1981, Prostaglandin precursors and the cell-mediated immune response, Cell. Immunol. 62:293.PubMedCrossRefGoogle Scholar
  36. Mestecky, J., McGhee, J. R., Arnold, R. R., Michalek, S. M., Prince, S. J., and Babb, J. L., 1978, Selective induction of an immune response in human external secretions by ingestion of bacterial antigen, J. Clin. Invest. 61:731.PubMedCrossRefGoogle Scholar
  37. Mestecky, J., McGhee, J. R., Crago, S. S., Jackson, S., Kilian, M., Kiyono, H., Babb, J. L., and Michalek, S. M., 1980, Molecular-cellular interactions in the secretory IgA response, J. Reticuloendothelial. Soc. 28:45s.Google Scholar
  38. Michalek, S. M., McGhee, J. R., Mestecky, J., Arnold, R. R., and Bozzo, L., 1976, Ingestion of Streptococcus mutans induces secretory IgA and caries immunity, Science 192: 1238.PubMedCrossRefGoogle Scholar
  39. Michalek, S. M., Kiyono, H., Babb, J. L., and McGhee, J. R., 1980a, Inheritance of LPS nonresponsiveness and elevated splenic IgA immune responses in mice orally immunized with heterologous erythrocytes, J. Immunol. 125:2220.PubMedGoogle Scholar
  40. Michalek, S. M., Moore, R. N., McGhee, J. R., Rosenstreich, D. L., and Mergenhagen, S. E., 1980b, The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin, J. Infect. Dis. 141:55.PubMedCrossRefGoogle Scholar
  41. Mizuguchi, J., Kakiuchi, T., Nariuchi, H., and Matuhasi, T., 1980, Effect of lipopolysaccharide on the thymocyte response to PHA: Strain difference, Immunology 41:393.PubMedGoogle Scholar
  42. Möller, G., Andersson, J., and Sjöberg, O., 1972a, Lipopolysaccharides can convert heterologous red cells into thymus-independent antigens, Cell. Immunol. 4:416.PubMedCrossRefGoogle Scholar
  43. Möller, G., Sjöberg, O., and Andersson, J., 1972b, Mitogen induced lymphocyte-mediated cytotoxicity in vitro: Effect of mitogens selectively activating T or B cells, Eur. J. Immunol. 2:586.PubMedCrossRefGoogle Scholar
  44. Morgan, E. L., Walker, S. M., Thomas, M. L., and Weigle, W. O., 1980, Regulation of the immune response. I. The potentiation of in vivo and in vitro immune responses by Fc fragments, J. Exp. Med. 152:113.PubMedCrossRefGoogle Scholar
  45. Morrison, D. C., and Rudbach, J. A., 1981, Endotoxin-cell-membrane interactions leading to transmembrane signalling, Contemp. Top. Mol. Immunol. 8:187.PubMedGoogle Scholar
  46. Morrison, D. C., and Ryan, J. L., 1979, Bacterial endotoxins and host immune responses, Adv. Immunol. 28:293.PubMedCrossRefGoogle Scholar
  47. Nishizawa, Y., Kishimoto, T., Kikutani, H., and Yamamura, Y., 1977, Induction and properties of cytoplasmic factor(s) which enhance nuclear nonhistone protein phosphorylation in lymphocytes stimulated by anti Ig, J. Exp. Med. 146:653.PubMedCrossRefGoogle Scholar
  48. O’Malley, B. W., and Means, A. R., 1976, The mechanism of steroid hormone regulation of transcription of specific eukaryotic genes, Prog. Nucleic Acid Res. Mol. Biol. 19:403.PubMedCrossRefGoogle Scholar
  49. Oppenheim, J. J., Northoff, H., Greenhill, A., Mathieson, B. J., Smith, K., and Gillis, S., 1980, Properties of human monocyte derived lymphocyte activating factor (LAF) and lymphocyte-derived mitogenic factor (LMF), in: Biochemical Characterization of Lymphokines (A. L. deWeck, F. Kristensen, and M. Landy, eds.), pp. 399–404, Academic Press, New York.Google Scholar
  50. Ozato, K., Adler, W. H., and Ebert, J. D., 1975, Synergism of bacterial lipopolysaccha-rides and concanavalin A in the activation of thymic lymphocytes, Cell. Immunol. 17: 532.PubMedCrossRefGoogle Scholar
  51. Peavy, D. L., Adler, W. H., Shands, J. W., and Smith, R. T., 1974, Selective effects of mitogens on subpopulations of mouse lymphoid cells, Cell. Immunol. 11:86.PubMedCrossRefGoogle Scholar
  52. Rosenstreich, D. L., and Vogel, S. N., 1980, Central role of macrophages in host responses to endotoxin, in: Microbiology 1980 (D. Schlessinger, ed.), pp. 11–15, American Society for Microbiology, Washington, D.C.Google Scholar
  53. Rosenstreich, D. L., Vogel, S. N., Jacques, A. R., Wahl, L. M., and Oppenheim, J. J., 1978, Macrophage sensitivity to endotoxin: Genetic control by a single codominant gene, J. Immunol. 121:1664.PubMedGoogle Scholar
  54. Roux, M. E., McWilliams, M., Phillips-Quagliata, J. M., Weiss-Carrington, P., and Lamm, M. E., 1977, Origin of IgA-secreting plasma cells in the mammary gland, J. Exp. Med. 146:1311.PubMedCrossRefGoogle Scholar
  55. Smith, R. T., 1972, Specific recognition reactions at the cellular level in mouse lymphoreticular cell subpopulations, Transplant. Rev. 11:178.PubMedGoogle Scholar
  56. Stein, G., Hunter, G., and Lavie, L., 1974, Non-histone chromosomal proteins: Evidence for their role in mediating the binding of histones to deoxyribonucleic acid during the cell cycle, Biochem. J. 139:71.PubMedGoogle Scholar
  57. Stott, D. I., and Williamson, A. R., 1978b, Non-histone chromatin proteins of B lymphocytes stimulated by lipopolysaccharide. I. Synthesis, Biochim. Biophys. Acta 521:726.PubMedGoogle Scholar
  58. Stott, D. I., and Williamson, A. R., 1978a, Non-histone chromatin proteins of B lymphocytes stimulated by lipopolysaccharide. II. Phosphorylation, Biochim. Bwphys. Acta 521: 739.Google Scholar
  59. Sultzer, B. M., 1968, Genetic control of leucocyte responses to endotoxin, Nature (London) 219:1253.CrossRefGoogle Scholar
  60. Suzuki, T., Taki, T., Hashimine, K., and Sadasevan, R., 1981, Biochemical properties of biologically active Fc receptors of human B lymphocytes, Molec. Immunol. 18:55.CrossRefGoogle Scholar
  61. Suzuki, T., Sadasevan, R., Saito-Taki, T., Stechschulte, D. J., Ballentine, L., and Helmkamp, G. M., 1980, Studies of Fc receptors of human B lymphocytes: Phospho-lipase A2 activity of Fc receptor, Biochemistry 19:6037.PubMedCrossRefGoogle Scholar
  62. Tornasi, T. B., Jr., 1980, Oral tolerance, Transplantation 29:353.CrossRefGoogle Scholar
  63. Vogel, S., and Mergenhagen, S. E., 1982, The cellular basis of endotoxin susceptibility, in: Host-Parasite Interactions in Periodontal Diseases (R. J. Genco and S. E. Mergenhagen, eds.), pp. 160–168, American Society for Microbiology, Washington, DC.Google Scholar
  64. Vogel, S. N., Marshall, S. T., and Rosenstreich, D. L., 1979, Analysis of the effects of lipopolysaccharide on macrophages’ differential phagocytic responses of C3H/HeN and C3H/HeJ macrophages in vitro, Infect. Immun. 25:328.Google Scholar
  65. Vogel, S. N., Weinblatt, A. C., and Rosenstreich, D. L., 1981, Inherent macrophage defects in mice, in: Immunologic Defects of Laboratory Animals (C. M. E. Gershwin and B. Merchant, eds.), pp. 327–357, Plenum Press, New York.Google Scholar
  66. Watanabe, T., and Ohara, J., 1981, Functional nuclei of LPS-nonresponder C3H/HeJ mice after transfer into LPS-responder C3H/HeN cells by cell fusion, Nature (London) 290:58.CrossRefGoogle Scholar
  67. Watson, J., 1977, Differentiation of B lymphocytes in C3H/HeJ mice: The induction of Ia antigens by lipopolysaccharide, J. Immunol. 118:1103.PubMedGoogle Scholar
  68. Watson, J., Riblet, R., and Taylor, B. A., 1977, The response of recombinant inbred strains of mice to bacterial lipopolysaccharides, J. Immunol. 118:2088.PubMedGoogle Scholar
  69. Watson, J., Largen, M., and McAdam, K. P. W. J., 1978a, Genetic control of endotoxin responses in mice, J. Exp. Med. 147:39.PubMedCrossRefGoogle Scholar
  70. Watson, J., Kelly, K., Largen, M., and Taylor, B. A., 1978b, The genetic mapping of a defective LPS response gene in C3H/HeJ mice, J. Immunol. 120:422.Google Scholar
  71. Watson, J., Kelly, K., and Whitlock, C., 1980, Genetic control of endotoxin sensitivity, in: Microbiology 1980 (D. Schlessinger, ed.), pp. 4–10, American Society for Microbiology, Washington, D.C.Google Scholar
  72. Winchurch, R. A., Hilberg, C., Birmingham, W., and Munster, A. M., 1981, Bacterial lipopolysaccharides activate immune suppressor cells in newborn mice, Cell. Immunol. 58:458.PubMedCrossRefGoogle Scholar
  73. Wolf, R. L., and Merler, E., 1979a, Role of lipids in the immune response. I. Localization to a lipid-containing fraction of the active moiety of an inhibitor (SIF) of lymphocyte proliferation, J. Immunol. 123:1167.Google Scholar
  74. Wolf, R. L., and Merler, E., 1979b, Role of lipids in the immune response. II. An enhancer of antibody production (APS) that is a lipid closely associated with lymphocyte mitogenic factor (LMF), J. Immunol. 123:1175.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Katherine A. Gollahon
    • 1
  • Suzanne M. Michalek
    • 1
  • Michael J. Wannemuehler
    • 1
  • Jerry R. McGhee
    • 1
  1. 1.Department of Microbiology, Comprehensive Cancer Center and Institute of Dental ResearchThe University of Alabama in BirminghamBirminghamUSA

Personalised recommendations