A Critical Assessment of the Application of FT-IR Spectroscopy to the Study of Crystalline/Compatible Polymer Blends

  • M. M. Coleman
  • D. F. Varnell
  • J. P. Runt
Part of the Polymer Science and Technology book series (PST, volume 20)


For those of us interested in polymer vibrational spectroscopy, the advent of computer-assisted instruments, especially Fourier transform infrared (FT-IR) spectrometers, served to rekindle our interest in applying the technique to complex multicomponent polymer systems such as blends and alloys. FT-IR spectrometers, are inherently more sensitive and accurate than conventional dispersive instruments but if viewed critically, the major advantages of the newer instruments are a direct consequence of the dedicated minicomputer. The use of signal averaging to enhance signal to noise ratio and the ability to manipulate the spectral data by techniques such as spectral subtraction and addition; least squares fitting of spectra; curve resolving and factor analysis has markedly increased our ability to characterize complex multicomponent polymer systems.


Amorphous State Polymer Blend Solubility Parameter Carbonyl Band Spectral Subtraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Flory, J. Am. Chem. Soc. 87, 1833 (1965).CrossRefGoogle Scholar
  2. 2.
    C.J. Ong and F.P. Price, J. Polym. Sci. Polym. Symp. 63, 45 (1978).CrossRefGoogle Scholar
  3. 3.
    C.A. Cruz, D.R. Paul and J.W. Barlow, J. Appl. Polym. Sci. 23, 589 (1979).CrossRefGoogle Scholar
  4. 4.
    M.M. Coleman, J. Zarian, D.F. Varnell and P.C. Painter, J. Polym. Sci. Polym. Lett. Ed. 15, 745 (1977).CrossRefGoogle Scholar
  5. 5.
    M.M. Coleman and P.C. Painter, J. Macromol. Sci. Rev. Macromol. Chem. C16, 197 (1977).Google Scholar
  6. 6.
    D.L. Allara, Appl. Spectrosc. 33, 358 (1979).CrossRefGoogle Scholar
  7. 7.
    M.M. Coleman and J. Zarian, J. Polym. Sci. Polym. Phys. Ed. 17, 1837 (1979).Google Scholar
  8. 8.
    M.M. Coleman and D.F. Varnell, J. Polym. Sci. Polym. Phys. Ed. 18, 1403 (1980).CrossRefGoogle Scholar
  9. 9.
    J.V. Koleske and R.D. Lundberg, J. Polym. Sci. A-2, 7, 795 (1969).CrossRefGoogle Scholar
  10. 10.
    D.F. Varnell and M.M. Coleman, Polymer 22, 1324 (1981).CrossRefGoogle Scholar
  11. 11.
    T. Okada and L. Mandelkern, J. Polym. Sci. A-2, 5, 239 (1967).CrossRefGoogle Scholar
  12. 12.
    M.M. Coleman, P.C. Painter, D.L. Tabb and J.L. Koenig, J. Polym. Sci. Polym. Lett. Ed. 12, 577 (1974).CrossRefGoogle Scholar
  13. 13.
    R.J. Petcavich and M.M. Coleman, J. Polym. Sci. Polym. Phys. Ed. 18, 2097 (1980).CrossRefGoogle Scholar
  14. 14.
    M.M. Coleman, D.F. Varnell and J. Runt Contemporary Topics in Polymer Science, (W.J. Bailey, Ed.) Plenum Press, Vol. 4, In press.Google Scholar
  15. 15.
    D.F. Varnell, J. Runt and M.M. Coleman, Macromolecules, In press.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. M. Coleman
    • 1
  • D. F. Varnell
    • 1
  • J. P. Runt
    • 1
  1. 1.Polymer Science Section, The Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations