Advertisement

Microphase Segregation in Segmented Amine-Cured Polyurethanes

  • C. R. Desper
  • N. S. Schneider
Part of the Polymer Science and Technology book series (PST, volume 20)

Abstract

The influence of chemical composition on microphase segregation in segmented polyurethanes based on 2,4 and 2,6 toluene diisocyanate (TDI) was investigated earlier by Schneider, Sung and co-workers (1-3). In these studies, polymers of varying degrees of phase segregation were prepared from the two types of TDI coupled to polyether or polyester soft segments and chain extended with butanediol. The extent of phase mixing was judged from infared estimates of interurethane hydrogen bonding as well as from thermal properties, particularly the soft segment glass transition temperature Tg· In general, for 2,4TDT-butanediol, which forms an amorphous hard segment structure, phase segregation was weak in samples with a 1000 molecular weight soft segment, but enhanced with increasing soft segment molecular weight, for the polyether as compared to the polyester soft segment, and with the use of 2,6TDI which forms a crystalline hard segment structure.

Keywords

Hard Segment Soft Segment Phase Segregation Interface Thickness Toluene Diisocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. Schneider, C. S. P. Sung, R. W. Matton and J. L. Illinger, Macronolecules, 8 ,62 (1975).CrossRefGoogle Scholar
  2. 2.
    C. S. P. Sung and N. S. Schneider, Macronolecules, 8, 68 (1975).CrossRefGoogle Scholar
  3. 3.
    N. S. Schneider and C. S. P. Sung, Polyn. Eng. and Sci., 17, 73 (1977).CrossRefGoogle Scholar
  4. 4.
    C. S. P. Sung, C. B. Wu, and C. S. Wu, Macronolecules, 13, 111 (1980).CrossRefGoogle Scholar
  5. 5.
    C. S. P. Sung, T. W. Smith, and N. H. Sung, Macronolecules, 13, 117 (1980).CrossRefGoogle Scholar
  6. 6.
    J. T. Koberstein, B. Morra, and R. S. Stein, J. Appl. Cryst., 13, 34 (1980).CrossRefGoogle Scholar
  7. 7.
    Z. Ophir and G. L. Wilkes, J. Polyn. Sci.: Polyn. Phys. Edn., 18, 1469 (1980).CrossRefGoogle Scholar
  8. 8.
    J. W. C. Van Bogart, A. Lilaonitkul and S. L. Cooper, Adv. in Chen. Series, 176, 3 (1979).Google Scholar
  9. 9.
    Glatter, J. Appl. Cryst. 7, 147 (1974).CrossRefGoogle Scholar
  10. 10.
    G. Porod, Kolloid-Z, 124, 83 (1954).Google Scholar
  11. 11.
    E. Helfand, Acc. Chen. Res. 8, 295 (1975).CrossRefGoogle Scholar
  12. 12.
    R. Bonart and E. Muller, J. Macronol. Sci. Phys., B10, 177, (1974).CrossRefGoogle Scholar
  13. 13.
    R. Bonart ar.d E. Muller, ibid., 345 (1974).Google Scholar
  14. 14.
    F. Bates, Sc. D. Thesis, Mass. Inst. of Tech., Chen. Eng. Dept., 1982.Google Scholar
  15. 15.
    O. Kratky, Z. Analyt. Chen. 201, 161 (1964).Google Scholar
  16. 16.
    C. G. Vonk, J. Appl. Crystallogr. 8 ,340 (1975).CrossRefGoogle Scholar
  17. 17.
    J. W. C. Van Bogart, Ph.D. Thesis, Univ. of Wisconsin, Dept. of Chen. Eng., 1981.Google Scholar
  18. 18.
    A. Guinier and G. Fournet, Snail Angle Scattering of X-rays, Wiley, New York, p. 158, 1955.Google Scholar
  19. 19.
    C. S. P. Sung, Polyner Sci. and Tech., Vol. 11, (D. Klenpner and K. C. Frisch, Eds.), Plenun Press, New York, p. 139, 1980.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • C. R. Desper
    • 1
  • N. S. Schneider
    • 1
  1. 1.Organic Materials LaboratoryArmy Materials and Mechanics Research CenterWatertownUSA

Personalised recommendations