Advertisement

Genetic vs. Nongenetic Chemical Carcinogenesis and Risk Assessment

  • Richard H. Reitz
  • Alan M. Schumann
  • Philip G. Watanabe
  • Perry J. Gehring
Part of the Basic Life Sciences book series (volume 6)

Abstract

The fundamental goal of toxicological research is to provide a rational basis for recommending acceptably safe levels of human exposure to potentially harmful agents. Chemically induced cancer is a toxic response that has received primary attention in recent years. The potential lethality of cancer, its generally irreversible nature, and its long latent period have placed carcinogenesis in the forefront of public concern.

Keywords

Cellular Regeneration Severe Tissue Damage Potential Lethality Vinylidene Chloride Renal Cortical Necrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartsch, H., C. Malaveille, A. Barbin, and G. Planche (1979) Mutagenic and alkylating metabolites of halo-ethylenes, chlorobutadienes, and dichlorobutenes by rodent or human liver tissues. Arch. Toxicol., 41, 249–277.PubMedCrossRefGoogle Scholar
  2. 2.
    Belmain, S. and W. Troll (1972) The inhibition of croton oil-promoted mouse skin tumorigenesis by steroid hormones. Cancer Research 32, 450.Google Scholar
  3. 3.
    Berenblum, I. (1944) Irritation and carcinogenesis. Arch. Pathol., 38, 233–244.Google Scholar
  4. 4.
    Berman, J.J., C. Tong, and G.M. Williams (1978) Enhancement of mutagenesis during cell replication of cultured liver epithelial cells. Cancer Letters, 4, 277–283.PubMedCrossRefGoogle Scholar
  5. 5.
    Bridges, B.A., E. Zeiger, and D.B. McGregor (1981) Summary report on the performance of bacterial mutation assays. Prog. Mutation Res., 1, 49–67.Google Scholar
  6. 6.
    Brookes, P. and R.J. Preston (1981) Summary report on the performance in in vitro mammalian assays. Prog. Mutation Res., 1, 77–85.Google Scholar
  7. 7.
    Brusick, D. (1976) Mutagenicity evaluation of orthophenyl-phenol: Final report. Submitted to Dow Chemical USA Ag-Organics Department by Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20795 as LBI Project No. 2547 (March 31).Google Scholar
  8. 8.
    de Serres, F.J. and J. Ashby, (1981) Selection, preparation and purity of the test chemicals. Prog. Mutation Res., 1, 8–15.Google Scholar
  9. 9.
    Gehring, P.J. and G.E. Blau (1977) “Mechanisms of Carcinogenesis: Dose Response” J. Environ. Path. Toxicol., 1, 163–179.Google Scholar
  10. 10.
    Gehring, P.J., P.G. Watanabe, and G.E. Blau (1979) “Risk Assessment of Environmental Carcinogens Utilizing Pharmacokinetic Parameters” Annals of the N. Y. Acad. Science, 329, 137–152.CrossRefGoogle Scholar
  11. 11.
    Hiraga, K. and T. Fujii (1981) Inductions of tumors of the urinary system in F344 rats by dietary administration of sodium o-phenylphenate. Food Cosmet. Toxicol., 19, 303–310.PubMedCrossRefGoogle Scholar
  12. 12.
    Laroye, G.J., (1974) How efficient is immunological surveillance against cancer and why does it fail? The Lancet, 1097–1100.Google Scholar
  13. 13.
    Lutz, W.K. (1979) In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis. Mutation Research 65, 289–356.PubMedGoogle Scholar
  14. 14.
    Maher, V.M., J.D. Dorney, A.L. Medrala, B. Konze-Thomas, and J.J. McCormick (1979) DNA excision repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet irradiation. Mutation Research, 62, 311–323.PubMedCrossRefGoogle Scholar
  15. 15.
    National Cancer Institute (1976) Carcinogenesis bioassay of chloroform. Nat. Tch. Inf. Service No. PB264018/AS, Bethesda, Maryland, USA (March 1 ).Google Scholar
  16. 16.
    National Cancer Institute (1977) Bioassay of Tetrachloro-ethylene for possible carcinogenicity. DHEW Publication No. 77 - 805 Bethesday, Maryland USA.Google Scholar
  17. 17.
    O’Neill, J.P., D.B. Couch, R. Machanoff, J.R. San Sebastian, P.A. Brimer, and A.W. Hsie (1977) A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese Hamster Ovary cells ( CHO/HGPRT system ): Utilization with a variety of mutagenic agents. Mutation Res. 45, 103–109.PubMedCrossRefGoogle Scholar
  18. 18.
    Rampy, L.W., J.F. Quast, B.K.J. Leong, and P.J. Gehring (1978) Results of long-term inhalation toxicity studies on rats of 1,1,1-trichloroethane and perchloroethylene formulations. In: Proceedings of the First International Congress on Toxicology ( G.L. Plaa and W.A.M. Duncan, eds.) Academic Press, New York.Google Scholar
  19. 19.
    Ramsey, J.C. and R.H. Reitz (1981) “Pharmacokinetics and Threshold Concepts” In: The Pesticide Chemist and Modern Toxicology (Bandai et al, ed.) ACS Symposium Series, Published by American Chemical Society, Washington, DC, USA.Google Scholar
  20. 20.
    Reitz, R.H., P.G. Watanabe, M.J. McKenna, J.F. Quast, and P.J. Gehring (1980a) Effects of vinylidene chloride on DNA synthesis and DNA repair in the rat and mouse; A comparative study with dimethylnitrosamine. Toxicol. Appl. Pharmacol., 52, 357–370.PubMedCrossRefGoogle Scholar
  21. 21.
    Reitz, R.H., J.F. Quast, W.T. Stott, P.G. Watanabe, and P.J. Gehring (1980b) Pharmacokinetics and macromolecular effects of chloroform in rats and mice: Indications for carcinogenic risk estimation. In: Water Chlorlnation: Environmental Impact and Health Effects (Jolley et al., eds.) Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan 48106.Google Scholar
  22. 22.
    Roe, F.J. C., A.K. Palmer, A.N. Worden (1979) Safety evaluation of toothpaste containing chloroform I. Long-term studies in mice. J. Environ. Pathol. Toxicol., 2, 799–819.PubMedGoogle Scholar
  23. 23.
    Schumann, A.M., J.F. Quast, and P.G. Watanabe (1980) The pharmacokinetics and macromolecular interactions of perchloro-ethylene in mice and rats as related to oncogenicity. Toxicol. Appl. Pharmacol., 55, 207–219.PubMedCrossRefGoogle Scholar
  24. 24.
    Uehleke, H., T. Werner, H. Greim, and M. Kramer (1977) Metabolic activation of haloalkanes and tests in vitro for mutagenicity. Xenobiotica 7, 393.PubMedCrossRefGoogle Scholar
  25. 25.
    Watanabe, P.G., R.H. Reitz, A.M. Schumann, M.J. McKenna, J.F. Quast, and P.J. Gehring (1980) Implications of the mechanisms of tumorigenicity for risk assessment. In: The Scientific Basis of Toxicity Assessment ( H. Witschi, ed). Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands.Google Scholar
  26. 26.
    Weisburger, J.H. and G.M. Williams (1980) In: Toxicology, the Basic Science of Poisons, (Doull et al., ed.) 2nd Ed. pp. 84–138, Macmillian Publishing Co., Inc., New York.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Richard H. Reitz
    • 1
    • 2
  • Alan M. Schumann
    • 1
  • Philip G. Watanabe
    • 1
  • Perry J. Gehring
    • 1
  1. 1.Toxicology Research LaboratoryDow Chemical USAMidlandUSA
  2. 2.Dow Chemical Co.MidlandUSA

Personalised recommendations