Advertisement

Overview of Genetic Toxicology

  • George R. Hoffmann
Part of the Basic Life Sciences book series (volume 6)

Abstract

The field of genetic toxicology exists because of the concern that environmental agents can cause genetic damage in man and thereby have an adverse effect on human health. Genetic toxicologists are concerned about effects both in germ cells and in somatic cells. An increase in the incidence of mutational events in human eggs or sperms could lead to an increase in the incidence of genetic disease and disability in future generations. In contrast, effects in somatic cells do not pose a threat to future generations, because they are not genetically transmitted beyond the individual in which they occur. The lack of transmissibility to progeny does not mean that genetic damage in somatic cells makes no contribution to the human disease burden. Rather, there is good reason to believe that mutations in somatic cells play an important part in the initiation of cancers (76). In fact, the great majority of chemicals that are known to cause cancer in laboratory animals or man also cause mutational events in one or more organisms in which they have been tested.

Keywords

Frameshift Mutation Recessive Mutation Genetic Damage Chemical Mutagen Chemical Mutagenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaron, C. S. and W. R. Lee, Molecular dosimetry of the mutagen ethyl methanesulfonate in Drosophila melanogaster spermatozoa: Linear relation of DNA alkylation per sperm cell (dose) to sex-linked recessive lethals, Mutation Res. 49, 27–44 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    Aaron, C. S., A. A. Van Zeeland, G. R. Mohn, A. T. Natarajan, A. G. A. C. Knaap, A. D. Tates, and B. W. Glickman, Molecular dosimetry of the chemical mutagen ethyl methanesulfonate: Quantitative comparison of mutation induction in Escherichia coli, V79 Chinese hamster cells and L5178Y mouse lymphoma cells, and some cytological results in vitro and in vivo, Mutation Res. 69, 201–216 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    Abrahamson, S., M. A. Bender, A. D. Conger, and S. Wolff, Uniformity of radiation-induced mutation rates among different species, Nature 245, 460–462 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    Abrahamson, S. and E. B. Lewis, Hie detection of mutations in Drosophila melanogaster, in; Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2 (A. Hollaender, ed.), pp. 461–487, Plenum Press, New York (1971).Google Scholar
  5. 5.
    Albertini, R. J., Drug-resistant lymphocytes in man as indicators of somatic cell mutation, Teratogenesis, Carcinogenesis, and Mutagenesis 1, 25–48 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    Altenburg, E., The artificial production of mutations by ultraviolet light, Teratogenesis, Carcinogenesis, and Mutagenesis 68, 491–507 (1934).Google Scholar
  7. 7.
    Ames, B. N., W. E. Durston, E. Yamasaki, and F. D. Lee, Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection, Proc. Natl. Acad. Sci. U.S.A. 70, 2281–2285 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    Ames, B. N., J. McCann, and E. Yamasaki, Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test, Mutation Res. 31: 347–364 (1975).PubMedGoogle Scholar
  9. 9.
    Ames, B. N. and H. J. Whitfield, Jr., Frameshift mutagenesis in Salmonella, Cold Spring Harbor Symp. Quant. Biol. 31, 221–225 (1966).CrossRefGoogle Scholar
  10. 10.
    Auerbach, C., History of research on chemical mutagenesis, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 3 (A. Hollaender, ed.), pp. 1–19, Plenum Press, New York (1973).Google Scholar
  11. 11.
    Auerbach, C. and J. M. Robson, Chemical production of mutations, Nature 157, 302 (1946).PubMedCrossRefGoogle Scholar
  12. 12.
    Auerbach, C. and J. M. Robson, The production of mutations by chemical substances, Proc. Roy. Soc. Edinburgh (B) 62, 271–283 (1947).Google Scholar
  13. 13.
    Bartsch, H., C. Malaveille, A.-M. Camus, G. Martel-Planche, G. Brun, A. Hautefeuille, N. Sabadie, A. Barbin, T. Kuroki, C. Drevon, C. Piccoli, and R. Montesano, Validation and comparative studies on 180 chemicals with S. typhimurium strains and V79 Chinese hamster cells in the presence of various metabolizing systems, Mutation Res. 76, 1–50 (1980).PubMedGoogle Scholar
  14. 14.
    Bateman, A. J. and S. S. Epstein, Dominant lethal mutations in mammals, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2 (A. Hollaender, ed.), pp. 541–568, Plenum Press, New York (1971).Google Scholar
  15. 15.
    Brewen, J. G. and R. J. Preston, Analysis of chromosome aberrations in mammalian germ cells, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 5 (A. Hollaender and F. J. deSerres, eds.), pp. 127–150, Plenum Press, New York (1978).Google Scholar
  16. 16.
    Brusick, D. J., V. F. Simmon, H. S. Rosenkranz, V. A. Ray, and R. S. Stafford, An evaluation of the Escherichia coli WP2 and WP2 A reverse mutation assay, Mutation Res. 76, 169–190 (1980).PubMedGoogle Scholar
  17. 17.
    Campbell, T. C., Chemical carcinogens and human risk assessment, Fed. Proc. 39, 2467–2484 (1980).PubMedGoogle Scholar
  18. 18.
    Clive, D., K. O. Johnson, J. F. S. Spector, A. G. Batson, and M. M. M. Brown, Validation and characterization of the L5178Y/TK+/- mouse lymphoma mutagen assay system, Mutation Res. 59, 61–108 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    Committee on the Biological Effects of Ionizing Radiations, The Effects on Populations of Exposure to Low Levels of Ionizing Radiation, National Academy Press, Washington (1980).Google Scholar
  20. 20.
    Conger, B. V. and J. V. Carabia, Mutagenic effectiveness and efficiency of sodium azide versus ethyl methanesulfonate in maize: Induction of somatic mutations at the yg 2 locus by treatment of seeds differing in metabolic state and cell population, Mutation Res, 46, 285–296 (1977).PubMedGoogle Scholar
  21. 21.
    Cooper, J. A., R. Saracci, and P. Cole, Describing the validity of carcinogen screening tests, Brit. J. Cancer 39, 87–89 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    Department of Health, Education and Welfare Committee to Co-ordinate Toxicology and Related Programs, Subcommittee on Environmental Mutagenesis, Approaches to Determining the Muta-genic Properties of Chemicals: Risk to Future Generations, J. Environ. Pathol. Toxicol. 1. 301–352 (1977).Google Scholar
  23. 23.
    deSerres, F. J. and J. Ashby (eds.), Evaluation of Short-Term Tests for Carcinogens; Report of the International Collaborative Program, Elsevier/North Holland, Amsterdam (1981).Google Scholar
  24. 24.
    deSerres, F. J. and H. V. Mailing, Measurement of recessive lethal damage over the entire genome and at two specific loci in the ad-3 region of a two-component heterokaryon of Neurospora crassa, in; Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2 (A. Hollaender, .), pp. 311–342, Plenum Press, New York (1971).Google Scholar
  25. 25.
    Drake, J. W. and other members of Committee 17 appointed by the Council of the Environmental Mutagen Society, Environmental mutagenic hazards, Science 187, 503–514 (1975).CrossRefGoogle Scholar
  26. 26.
    Ehling, U. H., Evaluation of genetic hazards in man from radiation and chemical mutagens, in: Radiobiological Equivalents of Chemical Pollutants, pp. 71–81, International Atomic Energy Agency (1980).Google Scholar
  27. 27.
    Ehrenberg, L., Higher Plants, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2 (A. Hollaender, ed.), pp. 365–386, Plenum Press, New York (1971).Google Scholar
  28. 28.
    Ehrenberg, L., Risk assessment of ethylene oxide and other compounds, in: Banbury Report 1, Assessing Chemical Mutagens: The Risk to Humans (V. K. McElheny and S. Abrahamson), pp. 157–190, Cold Spring Harbor Laboratory (1979).Google Scholar
  29. 29.
    Evans, H. J., Cytological methods for detecting chemical mutagens, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.), 1–29, Plenum Press, New York (1976).Google Scholar
  30. 30.
    Evans, H. J. and D. C. Lloyd (eds.), Mutagen-Induced Chromosome Damage in Man, Yale University Press, New Haven, 355 pp. (1978).Google Scholar
  31. 31.
    Fahrig, R., The mammalian spot test: A sensitive in vivo method for the detection of genetic alterations in somatic cells of mice, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 5 (A. Hollaender and F. J. deSerres, eds.), pp. 151–176, Plenum Press, New York (1978).Google Scholar
  32. 32.
    Generoso, W. M., J. B. Bishop, D. G. Gosslee, G. W. Newell, C.-J. Sheu, and E. von Halle, Heritable translocation test in mice, Mutation Res. 76 191–215 (1980).Google Scholar
  33. 33.
    Grant, W. F., Chromosome aberrations in plants as a monitoring system, Environ. Health Perspect. 27, 37–43 (1978).PubMedCrossRefGoogle Scholar
  34. 34.
    Griffiths, A. J. F., Neurospora prototroph selection system for studying aneuploid production, Environ, Health Perspect. 31, 75–80 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    Heddle, J. A. and K. Athanasiou, Mutation rate, genome size and their relation to the rec concept, Nature 258, 359–361 (1975).PubMedCrossRefGoogle Scholar
  36. 36.
    Heinemann, B., Prophage induction in lysogenic bacteria as a method of detecting potential mutagenic, carcinogenic, carcinostatic, and teratogenic agents, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 1 (A. Hollaender, ed.), pp. 235–266, Plenum Press, New York (1971).Google Scholar
  37. 37.
    Hoffmann, G. R., Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds, Mutation Res. 75, 63–129 (1980).PubMedGoogle Scholar
  38. 38.
    Hollstein, M., J. McCann, F. A. Angelosanto, and W. W. Nichols, Short-term tests for carcinogens and mutagens, Mutation Res. 65, 133–226 (1979).PubMedGoogle Scholar
  39. 39.
    Hook, E. B., Human teratogenic and mutagenic markers in monitoring about point sources of pollution, Environ. Res. 25, 178–203 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    Jenssen, D. and C. Ramel, The micronucleus test as part of a short-term mutagenicity test program for the prediction of carcinogenicity evaluated by 143 agents tested, Mutation Res. 75, 191–202 (1980).PubMedGoogle Scholar
  41. 41.
    Johnson, F. M. and S. E. Lewis, Electrophoretically detected germinal mutations induced in the mouse by ethylnitrosourea, Proc. Natl. Acad. Sci. U.S.A. 78, 3138–3141 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    Kada, T., A. Hirano, and Y. Shirasu, Screening of environmental chemical mutagens by the rec-assay system with Bacillus subtilis, in; Chemical Mutagens: Principles and Methods for Their Detection, Vol. 6 (F. J. deSerres and A. Hollaender), pp. 149–173, Plenum Press, New York (1980).Google Scholar
  43. 43.
    Kapp, R. W., Jr., Detection of aneuploidy in human sperm, Environ. Health Perspect. 31, 27–31 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    Kihlman, B. A., Root tips for studying the effects of chemicals on chromosomes, in; Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2 (A. Hollaender, ed.), pp. 489–514, Plenum Press, New York (1971).Google Scholar
  45. 45.
    Kihlman, B. A., Root tips of Vicia faba for the study of the induction of chromosome aberrations, in; Handbook of Mutagenicity Test Procedures (B. J. Kilbey, M. Legator, W. Nichols, and C. Ramel, eds.), pp. 389–400, Elsevier/North Holland, Amsterdam (1977).Google Scholar
  46. 46.
    Kilbey, B. J., F. J. deSerres, and H. V. Mailing, Identifica-tion of the genetic alteration at the molecular level of ultraviolet light-induced ad-3B mutants in Neurospora crassa, Mutation Res. 12, 47–56 (1971).PubMedCrossRefGoogle Scholar
  47. 47.
    Lee, W. R., Dosimetry of alkylating agents, in; Banbury Report l Assessing Chemical Mutagens; The Risk to Humans (V. K. McElheny and S. Abrahamson, eds.), pp. 191–200, Cold Spring Harbor Laboratory (1979).Google Scholar
  48. 48.
    Lee, W. R., Dosimetry of chemical mutagens in eukaryote germ cells, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 5 (A. Hollaender and F. J. deSerres, eds.), pp. 177–202, Plenum Press, New York (1978).Google Scholar
  49. 49.
    Ma, T.-H., Tradescantia micronucleus bioassay and pollen tube chromatid aberration test for in situ monitoring and mutagen screening, Environ. Health Perspect. 37, 85–90 (1981).PubMedGoogle Scholar
  50. 50.
    Mailing, H. V., Dimethylnitrosamines: Formation of mutagenic compounds by interaction with mouse liver microsomes, Mutation Res. 13, 425–429 (1971).CrossRefGoogle Scholar
  51. 51.
    McCann, J. and B. N. Ames, The Salmonella/microsome mutagenicity test: Predictive value for animal carcinogenicity, in: Mutagenesis: Advances in Modern Toxicology, Vol. 5 (W. G. Flamm and M. A. Mehlman, eds.), pp. 87–108, Hemisphere Publishing Co. (Wiley), Washington, D.C. (1978).Google Scholar
  52. 52.
    McCann, J., E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. U.S.A. 72, 5135–5139 (1975).PubMedCrossRefGoogle Scholar
  53. 53.
    Moreau, P., A. Bailone, and R. Devoret, Prophage λ induction in Escherichia coli K12 envA uvrB: A highly sensitive test for potential carcinogens, Proc. Natl. Acad. Sci. U.S.A. 73, 3700–3704 (1976).PubMedCrossRefGoogle Scholar
  54. 54.
    Mortimer, R. K. and T. R. Manney, Mutation induction in yeast, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 1 (A. Hollaender, ed.), pp. 289–310, Plenum Press, New York (1971).Google Scholar
  55. 55.
    Muller, H. J., Artificial transmutation of the gene, Science 66, 84–87 (1927).PubMedCrossRefGoogle Scholar
  56. 56.
    Oehlkers, F. Die Auslosung von Chromosomenmutationsen in der Meiosis durch Einwirkung von Chemikalien, Z. Ind. Abst. u. Vererbungsl. 81, 313–341 (1943).CrossRefGoogle Scholar
  57. 57.
    T.-M. Ong, Use of the spot, plate and suspension test systems for the detection of the mutagenicity of environmental agents and chemical carcinogens in Neurospora crassa, Mutation Res. 53, 297–308 (1978).PubMedGoogle Scholar
  58. 58.
    Parry, J. M., D. Sharp, and E. M. Parry, Detection of mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae, Environ. Health Perspect. 31, 97–111 (1979).PubMedCrossRefGoogle Scholar
  59. 59.
    Parry, J. M. and F. K. Zimmermann, The detection of monosomic colonies produced by mitotic chromosome non-disjunction in the yeast Saccharomyces cerevisiae, Mutation Res. 36, 49–66 (1976).PubMedCrossRefGoogle Scholar
  60. 60.
    Perry, P. E. Chemical mutagens and sister-chromatid exchange, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 6 ( F. J. deSerres and A. Hollaender, eds.), pp. 1–39, Plenum Press, New York (1980).Google Scholar
  61. 61.
    Plewa, M. J. and E. D. Wagner, Germinal cell mutagenesis in specially designed maize genotypes, Environ. Health Perspect. 37, 61 (1981).PubMedCrossRefGoogle Scholar
  62. 62.
    Purchase, I. F. H., E. Longstaff, J. Ashby, J. A. Styles, D. Anderson, P. S. Lefevre and F. R. Westwood, An evaluation of 6 short-term tests for detecting organic chemical carcinogens, Brit. Cancer 37, 873–959 (1978).CrossRefGoogle Scholar
  63. 63.
    Rapoport, I. A., Carbonyl compounds and the chemical mechanism of mutations, K;. R. (Dokl.) Acad. Sci. U.R.S.S., N.S. 54, 65–67 (1946).Google Scholar
  64. 64.
    Rinkus, S. J. and M. S. Legator, Chemical characterization of 465 known or suspected carcinogens and their correlation with mutagenic activity in the Salmonella typhimurium system, Cancer Res. 39, 3289–3318 (1979).PubMedGoogle Scholar
  65. 65.
    Rosenkranz, H. S. and Z. Leifer, Determining the DNA-modifying activity of chemicals using DNA-polymerase-deficient Escherichia coli, in: Chemical Mutagens; Principles and Methods for Their Detection, Vol. 6 (F. J. deSerres and A. Hollaender, eds.), pp. 109–147, Plenum Press, New York (1980).Google Scholar
  66. 66.
    Russell, L. B., Numerical sex-chromosome anomalies in mammals: Their spontaneous occurrence and use in mutagenesis studies, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.), pp. 55–91, Plenum Press, New York (1976).Google Scholar
  67. 67.
    Russell, W. L. and E. M. Kelly, Ineffectiveness of diethylnitrosamine in the induction of specific-locus mutations in mice, Genetics 91, s109–s110 (1979).Google Scholar
  68. 68.
    Russell, W. L., E. M. Kelly, P. R. Hunsicker, J. W. Bangham, S. C. Maddux, and E. L. Phipps, Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse, Proc. Natl. Acad. Sci. U.S.A. 76, 5818–5819 (1979).PubMedCrossRefGoogle Scholar
  69. 69.
    Russell, L. B. and B. E. Matter, Whole-mammal mutagenicity tests: Evaluation of five methods, Mutation Res. 75, 279–302 (1980).PubMedGoogle Scholar
  70. 70.
    San, R. H. C. and H. F. Stich, DNA repair synthesis of cultured human cells as a rapid bioassay for chemical carcinogens, Int. Cancer 16, 284–291 (1975).CrossRefGoogle Scholar
  71. 71.
    Schairer, L. A., J. Van’t Hof, C. G. Hayes, R. M. Burton, and F. J. deSerres, Exploratory monitoring of air pollutants for mutagenicity activity with the Tradescantia stamen hair system, Environ. Health Perspect. 27, 51–60 (1978).Google Scholar
  72. 72.
    Selby, P. B. and P. R. Selby, Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice, Mutation Res. 43, 357–375 (1977).PubMedCrossRefGoogle Scholar
  73. 73.
    Shelby, M. D. and I. F. H. Purchase, Assay systems and criteria for their comparisons, in: Evaluation of Short-Term Tests for Carcinogens: Report of the International Collaborative Program, (F. J. deSerres and J. Ashby, eds.), pp. 16–20, Elsevier/North Holland, Amsterdam (1981).Google Scholar
  74. 74.
    Skopek, T. R., H. L. Liber, D. A. Kaden, and W. G. Thilly, Relative sensitivities of forward and reverse mutation assays in Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 75, 4465–4469 (1978).PubMedCrossRefGoogle Scholar
  75. 75.
    Stadler, L. R., Genetic effects of X-rays in maize, Proc. Natl. Acad. Sci. U.S.A. 14, 69–75 (1928).PubMedCrossRefGoogle Scholar
  76. 76.
    Straus, D. S., Somatic mutation, cellular differentiation, and cancer causation, J. Natl. Cancer Inst. 67, 233–241 (1981).PubMedGoogle Scholar
  77. 77.
    Sutton, H. E., Hie impact of induced mutations on human populations, Mutation Res. 33, 17–24 (1975).PubMedCrossRefGoogle Scholar
  78. 78.
    Swift, M. and C. Chase, Cancer in families with xeroderma pigmentosum, J. Natl. Cancer Inst. 62, 1415–1421 (1979).PubMedGoogle Scholar
  79. 79.
    Swift, H., L. Sholman, M. Perry, and C. Chase, Malignant neoplasms in the families of patients with ataxia-telangiectasia, Cancer Res. 36, 209–215 (1976).PubMedGoogle Scholar
  80. 80.
    Thilly, W. G., J. G. DeLuca, E. E. Furth, H. Hoppe IV, D. A. Kaden, J. J. Krolewski, H. L. Liber, T. R. Skopek, S. A. Slapikoff, R. J. Tizard, and B. W. Penman, Gene-locus mutation assays in diploid human lymphoblast lines, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 6 (F. J. deSerres and A. Hollaender, eds.), pp. 331–364, Plenum Press, New York (1980).Google Scholar
  81. 81.
    Topham, J. C., Do induced sperm-head abnormalities in mice specifically identify mammalian mutagens rather than carcinogens?, Mutation Res. 74, 379–387 (1980).PubMedGoogle Scholar
  82. 82.
    Underbrink, A. G., L. A. Schairer, and A. H. Sparrow, Tradescant la stamen hairs: A radiobiological test system applicable to chemical mutagenesis, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 3 (A. Hollaender, ed.), pp. 171–207, Plenum Press, New York (1973).Google Scholar
  83. 83.
    Vogel, E. and F. H. Sobels, The function of Drosophila in genetic toxicology testing, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.), pp. 93–142, Plenum Press, New York (1976).Google Scholar
  84. 84.
    Williams, G. M., Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures, Cancer Res. 37, 1845–1851 (1977).PubMedGoogle Scholar
  85. 85.
    Williams, G. M., The detection of chemical mutagens/carcinogens by DNA repair and mutagenesis in liver cultures, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 6 (F. J. deSerres and A. Hollaender, eds.), pp. 61–79, Plenum Press, New York (1980).Google Scholar
  86. 86.
    Wolff, S., Sister chromatid exchange, Ann. Rev. Genet. 11, 183–201 (1977).PubMedCrossRefGoogle Scholar
  87. 87.
    Würgler, F. E., F. H. Sobels, and E. Vogel, Drosophila as assay system for detecting genetic changes, in: Handbook of Mutagenicity Test Procedures (B. J. Kilbey, M. Legator, W. Nichols, and C. Ramel, eds.), pp. 335–373, Elsevier/North Holland, Amsterdam (1977).Google Scholar
  88. 88.
    Wyrobek, A. J. and W. R. Bruce, The induction of sperm-shape abnormalities in mice and humans, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 5 (A. Hollaender and F. J. deSerres, eds.), pp. 257–285, Plenum Press, New York (1978).Google Scholar
  89. 89.
    Yamasaki, E. and B. N. Ames, Concentration of mutagens from urine by absorption with the nonpolar resin XAD-2: Cigarette smokers have mutagenic urine, Proc. Natl, Acad. Sci. U.S.A. 74, 3555–3559 (1977).CrossRefGoogle Scholar
  90. 90.
    Zimmermann, F. K., A yeast strain for visual screening for the two reciprocal products of mitotic crossing over, Mutation Res. 21, 263–269 (1973).PubMedCrossRefGoogle Scholar
  91. 91.
    Zimmermann, F. K., Procedures used in the induction of mitotic recombination and mutation in the yeast Saccharomyces cerevisiae, Mutation Res. 31, 71–86 (1975).PubMedGoogle Scholar
  92. 92.
    Zimmermann, F. K., R. Kern, and H. Rasenberger, A yeast strain for simultaneous detection of induced mitotic crossing over, mitotic gene conversion and reverse mutation, Mutation Res. 28, 381–388 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • George R. Hoffmann
    • 1
  1. 1.Department of BiologyCollege of the Holy CrossWorcesterUSA

Personalised recommendations