Analysis of Toxicants in Agricultural Environments

  • James N. Seiber
Part of the Basic Life Sciences book series (volume 6)


It is axiomatic that the magnitude of biological effects is related to the dose of chemical to which an organism or group of organisms is exposed. Tremendous advances in analytical methodology during the past several years have furnished, in many instances, precise information on exposure. This ability to identify and quantify chemicals, even at very low concentration levels, is reflected in the assignment of finite chemical standards—tolerances, action levels, threshold limit values (TLV’s), water and air quality standards, etc.—which belle the uncertainty in ascribing biological effects, particularly for diverse populations. This uncertainty is manifested in the relatively large safety factors used in assigning standards, rather than in the numerical standards themselves.


High Performance Liquid Chromatography High Performance Liquid Chromatography Rice Straw Organochlorine Pesticide Agricultural Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Conference of Governmental Industrial Hygienist, Inc. 1980. Documentation of the Threshold Limit Values. Fourth Edition. Cincinnati, Ohio.Google Scholar
  2. 2.
    Arpino, P.J. and G. Guiochon. 1979. LC/MS coupling. Anal. Chem. 51: 682A - 701A.CrossRefGoogle Scholar
  3. 3.
    Baughman, R., and M. Meselson. 1973. An analytical method for detecting TCDD (dioxin): Levels of TCDD in samples from Vietnam. Environ. Health Perspectives 1973: 27–35 (September).CrossRefGoogle Scholar
  4. 4.
    Berch, B., Y. Iwata, and F.A. Guntheг. 1981. Worker environment research: Rapid field method for estimation of organophosphorus insecticide residues on citrus foliage and in grove soil. J. Agric. Food Chem. 29: 209–216.CrossRefGoogle Scholar
  5. 5.
    Bertsch, W. 1981. Analysis of air and air pollutants. In: Applications of Glass Capillary Gas Chromatography, Jennings, W.G. (Ed). Marcel Dekker, New York. Chapter 4.Google Scholar
  6. 6.
    Bidleman, T.F. and C.E. Olney. 1975. Long-range transport of toxaphene insecticide in the western North Atlantic atmosphere. Nature 257: 475–477.CrossRefGoogle Scholar
  7. 7.
    Bjoreeth, A., and A.J. Dennis (Eds). 1980. Polynuclear aromatic hydrocarbons; Chemistry and Biological Effects. Batelle Press, Columbus, Ohio.Google Scholar
  8. 8.
    Bowman, M.C., W.L. Oiler, and T. Cairns. 1981. Stressed bioassay systems for rapid screening of pesticide residues. Part I. Evaluation of bioassay systems. Arch. Environ. Contamin. Toxicol. 10: 9–24.CrossRefGoogle Scholar
  9. 9.
    Brumley, W.C., J.AG. Roach, J.A. Sphon, P.A. Dreifuss, D. Andrzejewski, R.A. Niemann, and D. Firestone. Low-resolution multiple ion detection gas chromâtographic-mass spectrometeric comparison of six extraction-cleanup methods for determining 2,3,7,8-tetrachlorodibenzo-p-dioxin in fish. J. Agric. Food Chem 29; 1040–1046.Google Scholar
  10. 10.
    Burns, D.A. 1981. Automated sample preparation. Anal. Chem. 53; 1404A–1418A.CrossRefGoogle Scholar
  11. 11.
    Cairns, T., L. Fishbein, and R.K. Mitchum. 1980. Review of the dioxin problem. Mass spectrometric analyses of tetrachlorodioxins in environmental samples. Biomed. Mass Spec. 7: 484–492.CrossRefGoogle Scholar
  12. 12.
    Cooper, J.A. 1980. Environmental impact of residential wood combustion emissions and its implications. J. Air Pollut. Contr. Assn. 30: 855–861.CrossRefGoogle Scholar
  13. 13.
    Fine, D.H., R. Ross, D.P. Rounbuhler, A. Silvergleid, and L. Song. Analysis of nonionic nonvolatile N-nitroso compounds in foodstuffs. J. Agric. Food Chem. 25, 1416–1418 (1977).CrossRefGoogle Scholar
  14. 14.
    Fine, D.H., D.P. Rounbuhler, N.M. Belcher, and S.S. Epstein. N-nitroso compounds in air and water. In: N-Nitroso Compounds, Analysis and Formation. International Agency for Research on Cancer, Publication No. 14, pp. 401–408.Google Scholar
  15. 15.
    Finnegan, R.E., D.W. Hoyt and D.E. Smith. 1979. Priority pollutants II - cost-effective analysis. Environ. Sci. Technol. 13, 534–541.CrossRefGoogle Scholar
  16. 16.
    Friedman, L. and E.J. Calabrese. 1977. The health implications of open leaf burning. Revs. Environm. Health 2: 257–258.Google Scholar
  17. 17.
    Hall, R.E., and D.G. DeAngelis. 1980. EPA’s research program for controlling residential wood combustion emmissions. J. Air Pollut. Contr. Assn. 30: 855–861.CrossRefGoogle Scholar
  18. 18.
    Hammock, B.D. and R.O. Mumma. 1980. Potential of immunochemical technology for pesticide analysis. In: Pesticide Analytical Methodology, Harvey, Jr., J. and G. Zweig (Eds.), ACS Symposium Series 136, American Chemical Society, Washington, D. C. pp. 321–352.CrossRefGoogle Scholar
  19. 19.
    Harvey, Jr., J., and G. Zweig (Eds.) 1980. Pesticide Analytical Methodology. ACS Symposium Series 136, American Chemical Society, Washington, D. C. 406 pp.Google Scholar
  20. 20.
    Hermann, B.W. and J.N. Seiber. 1981. Glass capillary gas chromatography of pesticides. In: Applications of Glass Capillary Gas Chromatography, Jennings, W. (Ed.), Marcel Dekker, New York. Chapter 6.Google Scholar
  21. 21.
    Holmstead, R.L., S. Khalifa, and J.E. Casida. 1974. Toxaphene composition analyzed by combined gas chromatography-chemical ionization mass spectrometry. J. Agric. Food Chem. 22: 939–944.PubMedCrossRefGoogle Scholar
  22. 22.
    Hooper, N.K., B.N. Ames, M.A. Saleh, and J.E. Casida. 1979. Toxaphene, a complex mixture of polychloroterpenes and a major insecticide, is mutagenic. Science 205: 591–593.PubMedCrossRefGoogle Scholar
  23. 23.
    Hsieh, D.P.H., J.N. Seiber, G.L. Fisher, T.J. Mast, E.H. Olsen, J. Woodrow, and J.F. Yee. 1981. Potential health hazards associated with particulate matter released from rice straw burning. Final Report: Project A8-093-31, California Air Resources Board, Sacramento, GA, 231 pp.Google Scholar
  24. 24.
    Katz, A. 1972. Mercury pollution: The making of an environmental crisis. CRC Crit. Rev. Environ. Contr. 1972: 517.Google Scholar
  25. 25.
    Keith, L.W. (Ed.) 1976. Identification and Analysis of Organic Pollutants in Water. Ann Arbor Science, Ann Arbor, Mich.Google Scholar
  26. 25a.
    Khalifa, S., T.R. Mon, J.L. Engel, and J.E. Casida. 1974. Isolation of 2,2,5-endo,6-exo,8,9,10-hepta-chlorobornane and an octachloro toxicant from technical toxaphene. J. Agric. Food Chem. 22: 653–657.PubMedCrossRefGoogle Scholar
  27. 26.
    Klein, A.K., and J.D. Link. 1970. Elimination of interferences in the determination of toxaphene residues. J. Assoc. Off. Anal. Chem. 53: 524–529.Google Scholar
  28. 27.
    Lamparski, L.L. and T.J. Nestrick. 1980. Determination of tetra-, hexa-, hepta-, and octachlorodibenzo-p-dioxin Isomers in particulate samples at parts per trillion levels. Anal. Chem. 52: 2045–2054.CrossRefGoogle Scholar
  29. 28.
    Lamparski, L.L., T.J. Nestrick, and R.H. Stehl. 1979. Determination of part-per-trillion concentration of 2,3,7,8- tetrachlorodibenzo-p-dioxin in fish. Anal. Chem. 51: 1453–1458.PubMedCrossRefGoogle Scholar
  30. 29.
    Langhorst, M.L. and L.A. Shadoff. 1980. Determination of parts-per-trillion concentrations of tetra-, hexa-, and octa-chlorodibenzo-p-dioxins in human milk samples. Anal. Chem. 52: 2037–2044.PubMedCrossRefGoogle Scholar
  31. 30.
    Laramy, R.E. 1977. Analytical Chemistry of vinyl chloride— A survey. Amer. Lab.. 1977: 17–27 (December).Google Scholar
  32. 31.
    Ligon, Jr., W.V. 1979. Molecular analysis by mass spectrometry. Science 205: 151–159.PubMedCrossRefGoogle Scholar
  33. 32.
    Mast, T.J., J.E. Woodrow, and J. N. Seiber. 1981. Analysis of organic particulate matter from rice straw smoke. Paper No. 55 presented to the Division of Environmental Chemistry, 182nd National Meeting of the American Chemical Society, New York, NY, Aug. 23–28.Google Scholar
  34. 33.
    Matsumura, F., R.W. Howard, and J.O. Nelson. 1975. Structure of the toxic fraction A of toxaphene. Chemosphere 5: 271–276.CrossRefGoogle Scholar
  35. 34.
    Mirsatari, S.G. 1978. Some characteristics of toxaphene residues on foliage and in soil and sediment. Ph. D. Thesis, University of California, Davis, CA 95616. 112 pp.Google Scholar
  36. 35.
    Moye, H.A. (Ed.). 1980. Analysis of Pesticide Residues. Wiley, New York, 467 pp.Google Scholar
  37. 36.
    National Cancer Institute. 1979. Carcinogenesis Technical Report Series 37, Department of Health, Education, and Welfare Publication. NIH 79 - 837, Washington, DC.Google Scholar
  38. 36a.
    Olsen, H., J. Yee, T. Mast, J. Woodrow, G. Fisher, J. Seiber, D. Hsieh. “An Evaluation of PAH Content, Mutagenicity and Cytotoxicity of Rice Straw Smoke.” Presented at 6th International Symposium on Polynuclear Aromatic HC’s, Battelle, Columbus, Oct. 26–29, 1981.Google Scholar
  39. 37.
    Palmer, K.J., R.Y. Wong, R. E. Lundln, S. Khalifa, and J.E. Casida. 1975. Crystal and molecular structure of 2,2,5-endo 6-exo, 8,9,10-heptachlorobornane, C10 H11 Cl7, a toxic component of toxaphene Insecticide. J. Am. Chem. Soc. 97: 408–413.PubMedCrossRefGoogle Scholar
  40. 38.
    Parr, J.F. and S. Smith. 1976. Degradation of toxaphene In selected anaerobic soil environments. Soil Sci. 121: 52CrossRefGoogle Scholar
  41. 39.
    Pesticide Analytical Manual, 1971. U. S. Department of Healthy, Education, and Welfare, Food and Drug Adminstration, Rockvllle, MD., Vol. I.Google Scholar
  42. 40.
    Rinder, D.F., and J.R. Flecker. 1981. A radioimmunoassay to screen for 2,4-dlchlorophenoxyacetlc acid and 2,4,5-trichloro- phenoxyacetic acid in surface waters. Bull. Environ. Contamin. Toxicol. 26: 325–330.CrossRefGoogle Scholar
  43. 41.
    Schnute, W.C. and D.E. Smith. 1980. The application of GC/MS in environmental analysis. Amer. Lab. 1980: 87–95 (July).Google Scholar
  44. 42.
    Schuetzle, D. (Ed.) 1979. Monitoring Toxic Substances. ACS Symposium Series 94, American Chemical Society, Washington, DC 289 pp.Google Scholar
  45. 43.
    Seiber, J.N., S.C. Madden, M.M. McChesney, and W. L. Winterlin. 1979. Toxaphene dissipation from treated cotton field environments: Component residual behavior on leaves and in air, soil, and sediments determined by capillary gas chromatography. J. Agric. Food Chem. 27: 284–291.CrossRefGoogle Scholar
  46. 44.
    Seiber, J.N., G.A. Ferriera, B. Hermann, and J.E. Woodrow. 1980. Analysis of pesticldal residues in the air near agricultural treatment sites. In: Pesticide Analytical Methodolgy, Harvey, Jr., J. and G. Zweig (Eds.). ACS Symposium Series 136, American Chemical Society, Washington, DC, Chapter 10.Google Scholar
  47. 45.
    Sherma, J. and T.M. Shafik. 1975. A m##lticlass, multi-residue analytical method for determining pesticide residues in air. Arch. Environ. Contamin. Toxicol. 3: 55.CrossRefGoogle Scholar
  48. 46.
    Turner, W.V., S. Khalifa, and J.E. Casida. 1975. Toxaphene toxicant A. Mixture of 2,2,5-endo, 6-exo, 8,9,9,10-octa- chlorobornane. J. Agric. Food Chem. 23: 991–994.PubMedCrossRefGoogle Scholar
  49. 47.
    Wallis, C. 1981. Bad news for the birds. Time 1981: 52 (October 5).Google Scholar
  50. 48.
    Wilson, M.L. 1980. A review of monitoring methodology for gaseous criteria pollutants. Amer. Lab 1980: 37–53 (February).Google Scholar
  51. 49.
    Woolsen, E.A., P.D.J. Ensor, W.L. Reichel, and A.L. Young. 1973. Dloxln residues in. Lakeland sand and bald eagle samples. In: Chlorodioxins—Origin and Fate. Blair, E.H. (Ed.). ACS Symposium Series 120, American Chemical Society, Washington, DC. Chapter 12.Google Scholar
  52. 50.
    Zweig, G. 1970. The vanishing zero: The evolution of pesticide analyses. In: Essays in Toxicology, Vol. 2, Academic Press, New York. Chapter 3.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • James N. Seiber
    • 1
  1. 1.Department of Environmental ToxicologyUniversity of CaliforniaDavisUSA

Personalised recommendations