Observing Surface Diffusion at the Atomic Level

I. Single Atoms
  • D. W. Bassett
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 86)


Since ancient times many have no doubt been fascinated by dust dancing in a sunbeam, but the long history of studies of individual particle motion in diffusion perhaps begins with Brown’s studies in 1827 of the motion of pollen grains seen under the microscope. In these early studies the particles undergoing random motion, or Brownian motion as we now term it, were macroscopic and their motions could be observed and recorded using optical microscopes. In thinking about surface diffusion, however, we are interested in the motions of individual atoms and to study them we require microscopes with atomic resolution. For these we can use the field ion microscope (FIM) if we are interested in metals, while for atoms diffusing on non-metal surfaces scanning transmission electron microscopes (STEM) can be used. Despite the much greater resolution compared to optical microscopy, the phenomena to be observed have many similarities to the motion of macroscopic particles and approaches used in their study remain valid. It is fascinating, for example, to compare the mapping of individual colloid particle trajectories by Jean Perrin1 with the atomic resolution trajectory mapping undertaken more recently by Tsong2, which can be used to define the atomic site lattice for the surface even when this cannot be seen3. Such comparisons emphasise the close links between present day studies of surface diffusion and discoveries in the early part of this century, a feature that seems characteristic of recent developments in surface science generally. In the following sections, however, this point will not be pursued and attention is restricted to recent studies using atomic resolution microscopy.


Surface Diffusion Scan Transmission Electron Microscope Crystal Face Displacement Distribution Field Evaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Perrin, “Les Atomes”, Presses Universitaire de France, Paris (1948), First Edition (1912).Google Scholar
  2. 2.
    T.T. Tsong, Phys. Rev. B 6 (1972) 417.CrossRefGoogle Scholar
  3. 3.
    P.L. Cowan and T.T. Tsong, Surf. Sci. 67 (1977) 158.CrossRefGoogle Scholar
  4. 4.
    M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, and M. Utlaut, Ultramicroscopy 1 (1976) 359.CrossRefGoogle Scholar
  5. 5.
    M. Utlaut, Phys. Rev. B 12 (1980) 4650.CrossRefGoogle Scholar
  6. 6.
    E.W. Müller, Z. Elektrochem. 61 (1957) 43.Google Scholar
  7. 7.
    T.T. Tsong, and E.W. Müller, “Field Ion Microscopy”, Elsevier, New York, (1969).Google Scholar
  8. 8.
    G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44 (1966) 1039.Google Scholar
  9. 9.
    P.G. Flahive and W.R. Graham, Surf. Sci. 91 (1980) 463.CrossRefGoogle Scholar
  10. 10.
    R.T Tung and W.R. Graham, Surf. Sci. 97 (1980) 73.CrossRefGoogle Scholar
  11. 11.
    R. Casanova and T.T. Tsong, Phys. Rev. B 22 (1980) 4632.CrossRefGoogle Scholar
  12. 12.
    G. Ehrlich, J.Chem. Phys. 44 (1966) 1050.CrossRefGoogle Scholar
  13. 13.
    G. Ayrault and G. Ehrlich, J. Chem. Phys. 60 (1974) 281.CrossRefGoogle Scholar
  14. 14.
    M.J. Parsley, Ph.D Thesis, London University, (1969).Google Scholar
  15. 15.
    T.T.Tsong, P.L.Cowan and G.Kellogq,Thin Solid Films, 25 (1975) 97.CrossRefGoogle Scholar
  16. 16.
    D.A. Reed and G. Ehrlich, J. Vac. Sci. Technol. 13 (1976) 196.CrossRefGoogle Scholar
  17. 17.
    K. Stolt, W.R. Graham and G. Ehrlich, J. Chem. Phys. 65 (1975) 3206.CrossRefGoogle Scholar
  18. 18.
    W.R. Graham and G. Ehrlich, Surf. Sci. 45 (1974) 530.CrossRefGoogle Scholar
  19. 19.
    P.G Flahive and W.R. Graham, Thin Solid Films, 51 (1978) 175.CrossRefGoogle Scholar
  20. 20.
    M.R. Mruzik and G.M. Pound, J. Phys. F. 11 (1981) 1403.Google Scholar
  21. 21.
    J.C. Tully, G.H. Gilmer and M. Shugard, J. Chem. Phys., 71 (1979) 1630.Google Scholar
  22. 22.
    G. Ehrlich, Physics Today 34 (1981) 44.CrossRefGoogle Scholar
  23. 23.
    D.W. Bassett and M.J. Parsley, J.Phys. D 3 (1970) 707.CrossRefGoogle Scholar
  24. 24.
    T.T. Tsong and G. Kellogg,Phys. Rev. B 12 (1975) 1343.Google Scholar
  25. 25.
    P.L. Cowan and T.T. Tsong, CRC Crit. Rev. Solid State Mater. Sci. 7 (1978) 289.CrossRefGoogle Scholar
  26. 26.
    W.R. Graham and G. Ehrlich, Thin Solid Films 25 (1975) 85.CrossRefGoogle Scholar
  27. 27.
    T. Sakata and S. Nakamura, Surf. Sci. 51 (1975) 313.CrossRefGoogle Scholar
  28. 28.
    D.A. Reed and G. Ehrlich, Phil. Mag. 32 (1975) 1095.Google Scholar
  29. 29.
    D.W. Bassett, J. Phys.. C, 9 (1976) 2491.CrossRefGoogle Scholar
  30. 30.
    D.W. Bassett, Thin Solid Films 48 (1978) 237.CrossRefGoogle Scholar
  31. 31.
    V.R. Dhanak and D.W. Bassett, (unpublished).Google Scholar
  32. 32.
    D.W. Bassett and P.R. Webber, Surf.Sci. 70 (1978) 520.CrossRefGoogle Scholar
  33. 33.
    S.S. Brenner, “Abstracts 15th Field Emission Symposium” Bonn, 1968.Google Scholar
  34. 34.
    B. Coulston and D.W. Bassett, (unpublished).Google Scholar
  35. 35.
    P.G. Flahive and W.R. Graham, Surf. Sci. 91 (1980) 449.CrossRefGoogle Scholar
  36. 36.
    J. Wrigley and G. Ehrlich, Phys. Rev. Lett., 44 (1980) 661.CrossRefGoogle Scholar
  37. 37.
    T. Halicioglu and G.M. Pound, Thin Solid Films, 57 (1979) 241.CrossRefGoogle Scholar
  38. 38.
    S.H. Garofalini and T. Halicioglu, Surf. Sci. 104 (1981) 199.CrossRefGoogle Scholar
  39. 39.
    D.W. Bassett, C.K. Chung and D.R. Tice, Le Vide, 176 (1975) 39.Google Scholar
  40. 40.
    N.A. Gjostein in “Surfaces and Interfaces,” Burke, Reed and Weiss, eds, Syracuse University Press, (1967) 271.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • D. W. Bassett
    • 1
  1. 1.Department of ChemistryImperial College of Science and TechnologyLondonUK

Personalised recommendations