Influence of Interfacial Diffusion on Materials Microstructure and Behaviour

  • M. McLean
  • E. K. Hondros
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 86)


A common theme that has dominated the other papers in this meeting, and indeed the entire field of interfacial mobilities in recent years, has been the emphasis on carrying out experimental studies on surfaces that are well characterised in terms of orientation, structure and chemical composition. The metallurgist or materials technologist is faced with the opposite problem of trying to relate the kinetic behaviour of real engineering materials, which are invariably contaminated (or even doped to give beneficial materials properties) and contain a range of surface orientations of uncertain structure, to the available information on such “ideal” surfaces. The first part of this paper will attempt to assess, in particular, the influence of small compositional variations of alloys (either deliberate or accidential) on the structure and kinetic behaviour of interfaces. Rather than take a detailed atomistic approach, used in other contributions to this volume, the problem will be tackled from a macroscopic viewpoint to develop practically useful guide-lines to predict the potency of various impurities/dopants. In the second part of the paper a series of case studies of materials phenomena involving interfacial diffusion will be described with particular reference to the ability to modify the roles of the processes through compositional control.


Boundary Diffusion Auger Electron Spectroscopy Cavity Growth Interfacial Diffusion Diffusion Creep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    W. W. Mullins in “Metal Surfaces-Structure, Energetics and Kinetics; edited by W. D. Robertson and N. A. Gjostein, American Society for Metals, Metals Park, Ohio (1963).Google Scholar
  2. (2).
    H. Udin, A. J. Shaler and J. Wulff. Trans. Metall. Soc. of AIME, 185, 186 (1949).Google Scholar
  3. (3).
    E. D. Hondros, Proc. Roy. Soc. (London) 286A 479 (1965).Google Scholar
  4. (4).
    M. Drechsler, this volume.Google Scholar
  5. (5).
    C. Herring, in “The Physics of Powder Metallurgy”, edited by W. E. Kingston, McGraw-Hill, New York, 1951.Google Scholar
  6. (6).
    M. McLean and B. Gale, Phil. Mag. 20, 1033, (1969).CrossRefGoogle Scholar
  7. (7).
    A. W. Czanderna (ed.), “Methods of Surface Analysis”, Elsevier, New York (1975).Google Scholar
  8. (8).
    H. L. Marcus et al., ASTM Data Ser. STP 499, 90 (1972).Google Scholar
  9. (9).
    E. D. Hondros and M. P. Seah, Int. Metall. Rev. 222, 262 (1977).CrossRefGoogle Scholar
  10. (10).
    M. P. Seah and E. D. Hondros, Proc. Roy. Soc. (London) 335A, 191 (1973).Google Scholar
  11. (11).
    F. Delamare and G. E. Rhead, Surface Science, 28, 267, (1971).CrossRefGoogle Scholar
  12. (12).
    M. McLean and J. P. Hirth, Surface Science 12, 177 (1968).CrossRefGoogle Scholar
  13. (13).
    J. Bernardini, P. Gas, E. D. Hondros and M. P. Seah, Proc. Roy. Soc. (London) in press.Google Scholar
  14. (14).
    R. L. Coble, J. Appl. Phys. 32, 787 and 793 (1961).Google Scholar
  15. (15).
    W. C. Johnson, D. F. Stein and R. W. Rice in “Grain Boundaries in Engineering Materials”, Proc of 4th Bolton Landing Conference, ed. by J. L.Walter et al., Claitors Publishing Division, Baton Rouge, La (1974).Google Scholar
  16. (16).
    P. Nanni, C. T. H. Stoddart and E. D. Hondros, J. Mater. Chem, 1, 297 (1976).CrossRefGoogle Scholar
  17. (17).
    J. Stringer and D. P. Whittle in “High Temperature Materials in Gas Turbins”, edited by P. R. Sahm and M. O. Speidel, Elsevier, Amsterdam (1974).Google Scholar
  18. (18).
    E. Bullock, C. Lea and M. McLean, Metals Science, 13, 373 (1979).Google Scholar
  19. (19).
    M. McLean, Metal Science 12, 113 (1978).CrossRefGoogle Scholar
  20. (20).
    C. Herring, J. Appl. Phys. 21, 301 (1950).CrossRefGoogle Scholar
  21. (21).
    M. McLean and M. S. Loveday, J. Mater. Sci. 9, 1104 (1974).CrossRefGoogle Scholar
  22. (22).
    E. Ho and G. C. Weatherly, Acta Met. 23, 1451 (1975).CrossRefGoogle Scholar
  23. (23).
    P. Wynblatt, Acta Met. 24, 1175 (1976)CrossRefGoogle Scholar
  24. T. H. Ahn, P. Wynblatt and J. K. Tien, Acta Met. 29, 921 (1981).CrossRefGoogle Scholar
  25. (24).
    M. F. Ashby and R. M. A. Centamore, Acta Met. 16, 1081 (1968)CrossRefGoogle Scholar
  26. (25).
    M. McLean, Scripta Met. 9, 439 (1975).CrossRefGoogle Scholar
  27. (26).
    P. G. Shewmon, Trans. Metall. Soc. AIME 230, 1134 (1964).Google Scholar
  28. (27).
    D. R. H. Jones, Metal Sci. 8, 37 (1974)Google Scholar
  29. D. R. H. Jones, Mater. Sci & Eng. 15, 203 (1974).CrossRefGoogle Scholar
  30. D. R. H. Jones and G. J. May, Acta Met. 23, 29 (1975).CrossRefGoogle Scholar
  31. (28).
    M. McLean, Acta Met. 25, 1209 (1977).CrossRefGoogle Scholar
  32. (29).
    P. Hayes and P. Grieveson, Metal Sci. 9, 332 (1975).CrossRefGoogle Scholar
  33. (30).
    R. Rosenberg and M. Ohring, J. Appl. Phys. 42, 5671 (1971)CrossRefGoogle Scholar
  34. P. S. Ho, Phys. Rev. 8B, 4534 (1973).Google Scholar
  35. P. S. Ho and J. K. Howard, J. Appl. Phys. 45, 3229 (1974).CrossRefGoogle Scholar
  36. (31).
    G. W. Greenwood in “Physical Metallurgy of Reactor Fuel Elements”, edited by J. E. Harris and E. C. Sykes, The Metals Society, London (1975).Google Scholar
  37. (32).
    E. D. Hondros in “Physical Metallurgy of Reactor Fuel Elements”, edited by J. E. Harris and E. C. Sykes. The Metals Society, London (1975).Google Scholar
  38. (33).
    L-E. Svensson and G. L. Dunlop, Int. Metall. Rev. no. 2, 109 (1981)CrossRefGoogle Scholar
  39. (34).
    B. F. Dyson, Metal Sci. 10, 349 (1976).CrossRefGoogle Scholar
  40. (35).
    G. B. Thomas and T. B. Gibbons in “Superalloys 1980”, edited by J. K. Tien et al. American Society for Metals, Metals Park, Ohio (1980).Google Scholar
  41. (36).
    P. G. Shewmon, Metall. Trans. IA, 279 (1976).Google Scholar
  42. R. Pishko, M. McKimpson and P. G. Shewmon, Metall. Trans 10A, 887, (1979).Google Scholar
  43. G. Sundarajan and P. G. Shewmon, Metall. Trans. 11a, 509 (1980).Google Scholar
  44. (37).
    R. H. Briknell and D. A. Woodford in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. Owen, Pineridge Press, Swansea (1981).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. McLean
    • 1
  • E. K. Hondros
    • 1
  1. 1.Division of Materials ApplicationsNational Physical LaboratoryTeddington, MiddlesexUK

Personalised recommendations