Skip to main content

Chromatin, Nuclei and Water: Alterations and Mechanisms for Chemically- Induced Carcinogenesis

  • Chapter
Chemical Carcinogenesis

Abstract

In recent years experimental evidences (1–5) have been accumulating on the orderly organization of the chromatin-DNA within mammalian cells from the Watson-Crick double helix (secondary structure) through successive higher order DNA foldings (nucleosome and super-nucleosome) up to a quinternary level (5), being postulated as drapery-like regular packing of 300 A° “solenoid-like” or “rope-like” fibers. While uncertainty still exists on the exact three-dimensional geometry ‘in situ’ of the latter two superstructures, there is general agreement on both the tertiary structure (wrapping of DNA around octamer histones to form the nucleosome) and on the modulation of the overall chromatin structure during cell transformation and cell proliferation. Namely the native higher order structure (5, 6, 7,) has been conclusively linked to DNA replication and mitotic condensation, through abrupt structural transitions induced by enzymatic modifications of HI histones, ions and generally by the neutralization of DNA phosphate charge (as strikingly expected from polyelectrolyte theory (8)). An increase of chromatin condensation has been also consistently associated with cell transformation (either induced by virus, chemical or spontaneously), suggesting that an higher order chromatin superpacking and a reduced chromatin template (9, 4) are a prerequisite for the expression of the transformed phenotype. This apparent paradox is however complicated by the significant chromatin modulation occuring during cell cycle progression of both normal and transformed cells, which obscure the increased condensation. It would seem indeed that only the degree of coupling between changes in nuclear morphometry (chromatin higher order structure) and changes in cell morphometry is uniquely low for individual transformed cell, being quite high for every fibroblast or normal cell (5, 10). In transformed cell, the absence of any coupling would let chromatin to progress through its cycles of condensation and decondensation regardless the shape assumed by the intact cell, including a round one as in suspension or as induced by cell-cell interaction, nutritional deprivation or cell-substrate interaction. The mechanism by which cell geometry and cell growth are respectively coupled in normal and uncoupled in transformed cells (10) was indeed suggested to be the physically (microtubules-microfilaments) or chemically induced coupling and uncoupling between nuclear morphometry and cell geometry, with the higher degree of fiber superpacking being also related to the expressions of transformed phenotypes. It would be then interesting to verify if these findings can be generalized to cell transformation induced by chemical carcinogens in VIVO, but prior to characterize its significance and specific structural-functional modification induced by chemical carcinogens (as originally reported time ago (11)), it is mandatory to know more about chromatin itself. Unperturbed rat liver cells and rat liver chromatin were mainly used as experimental models; for the purpose of comparison complementary measurements on calf thymus chromatin have been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Felsenfeld, G., 1978. Nature, 271, 115–121.

    Article  PubMed  CAS  Google Scholar 

  2. Finch, J., and Klug, A., 1976. Proc. Nat. Acad. Sci. U.S.A.? 73, 1897–1901.

    Article  CAS  Google Scholar 

  3. Nicolini, C., and Kendall, F., 1977. Physiol. Chem. Phys. 9, 265–283.

    Google Scholar 

  4. Nicolini C., 1979. In: ‘Chromatin structure and function’. C. Nicolini ed., Plenum Publishing Co., NATO-ASI Series, pp. 613–666

    Google Scholar 

  5. Nicolini, C., 1980. Journal of Submicroscopic Cytology 12 475–505.

    Google Scholar 

  6. Ruttle, H., Baldwin, J., Mathews, A., Carpenter B., Suau, P., and Bradbury, E., 1979. In: “Chromatin structure and function’. C. Nicolini ed., Plenum Publishing Co.

    Google Scholar 

  7. Dolby, T., Belmont, A., Borun, T., and Nicolini, C., 1981. J. Cell Biolgoy 89, 78–85.

    Article  CAS  Google Scholar 

  8. Belmont, A., and Nicolini, C., 1981. J. Theoretical Biology 90, 169–179.

    Article  CAS  Google Scholar 

  9. Kendall, F., Beltrame, and Nicolini, C., 1979. IEEE Transactions Biomed. Eng. 26, 173–175

    Google Scholar 

  10. Nicolini, C., and Beltrame, F., 1980. Cell Biology. Intl. Reports (1982) January.

    Google Scholar 

  11. Nicolini,., Ramanhatthan, R., Kendall, F., Murphy, J., Parodi, S., and Sarma, D., 1976, Cancer Research, 36, 1725–1730.

    Google Scholar 

  12. Nicolini, C., Grattarola, M., Viviani, R, Martelli, A., Basic and Allied Histoch (1982).

    Google Scholar 

  13. Sun, T., Nishio, I., and Tanaka, T., J. Chem. Phys., 1980, 73, 5971–5.

    Article  CAS  Google Scholar 

  14. Cavazza, B., Conio, G., Patrone, E., Pioli, F., and Trefiletti, V. 1979. Makaromol. Chem., 180, 1607–1609

    Article  CAS  Google Scholar 

  15. Parodi, S., Carlo, P. Martelli, A., Taningher, M., Finollo, R., Giaretti, 1981 J. Mol. Biol. 147, 501–521

    Google Scholar 

  16. Gallina, V., Malvano, R., and Omini, M., 1971, Review Sci. Instrum. 42, 1607–1613.

    Article  CAS  Google Scholar 

  17. Nicolini, C., Carlo, P., Martelli, A., Finollo, R., Bignone, F., and Brambilla, G., Journal Molecular Biology in Press.

    Google Scholar 

  18. Trefiletti, V., Martelli, A., Cavazza, B., Cuniberiti, C., Nicolini, C., and Patrone, E., Internal Report Group Biostructure, 9/81 University of Genova (1981).

    Google Scholar 

  19. Nicolini, C., Belmont, A., Parodi, A., Abraham, S., and Lessin, S., 1979. J. Histochem. Cytochem., 21, 102–113.

    Google Scholar 

  20. Nicolini, C., 1980.In: ‘Advances in neuroblastoma research’. A. Evans ed., Raven Press, New York, pp. 271–285.

    Google Scholar 

  21. Nicolini, C., Kendall, F., and Giaretti, W., 1977a. Biophys. J. 19., 163–176.

    Google Scholar 

  22. Nicolini, C., Linden, W., Zietz, S., and Wu, S., 1977. Nature 270, 607–609.

    Article  PubMed  CAS  Google Scholar 

  23. Kendall, F., Beltrame, F., and Nicolini, C., 1979. In: ‘Chromatin structure and function’. Part A., C. Nicolini ed., Plenum Publishing Co., New York-London, pp. 265–292.

    Google Scholar 

  24. Beltrame, F., Chiabrera, A., Grattarola, M., Guerrim, P., Parodi, G., Ponta, D., Vernazza, G. and Viviani, R. 2nd Annual Conference of the IEEE Engineering in Medicine and Biology Society, 1980, Washington, D.C.

    Google Scholar 

  25. Bianco, B., Drago, G., Marchesi, M., Martini, C., Mela, G., and Ridella, S. 1979. IEEE Transactions Instr. & Measur., 28, 290–294

    Article  Google Scholar 

  26. Ridella, S., Intra, E., Mela, G., and Spiga, VI Int. Conference on Electrical Bio-impedence, 1981, Tokyo.

    Google Scholar 

  27. Nicolini, C., Carlo, P. and Ridella, S., IEEE Transactions on Biomedical Engineering, 1982, submitted.

    Google Scholar 

  28. Widnell, C., and Tata, J., Biochem. J., 1964, 92, 313, 317.

    Google Scholar 

  29. Nicolini, C., Patrone, E., Cavazza, B., Trefiletti, V., Parodi, G., and Beltrame, F., Internal Report 8/81 Group of Biostructure, University of GenovA (1981) and submitted to P.N.A.S.-U.S.A.

    Google Scholar 

  30. Miller, P. Linden, W., and Nicolini, C., Z., 1979. Naturforsch. 34, 442–448.

    Google Scholar 

  31. Dolby, T., Borun, T., Gilmour, S., Cohen, A., Zweidler, A., Miller, P., and Nicolini, C., 1979. Biochemistry. 18, 1333–1345.

    Article  PubMed  CAS  Google Scholar 

  32. Kendall, F., Beltrame, F., Belmont, A., Zietz, S., Nicolini, C., 1980. Cell Biophysics 2, 373–404.

    PubMed  CAS  Google Scholar 

  33. Nicolini, C., Kendall, F., Desaive, C., and Giarretti, W., 1977c. Exp, Cell Res., 106, 199–127.

    Google Scholar 

  34. Nicolini, C., 1980. Cell Biophysics, 2, 271–290

    PubMed  CAS  Google Scholar 

  35. Beal, P., Hazlewood, P., and Rao, P., Science, 1976. 192, 904–906.

    Article  Google Scholar 

  36. Nicolini, C., Kozu, A., Borun, T., and Baserga, R., 1975. J. Biol Chem. 250, 3381–3385.

    PubMed  CAS  Google Scholar 

  37. Nicolini, C., Parodi, S., Beltrame, F., and Lessin, S., In Short term Tests for Chemical Carcinogenesis, eds. S. Parodi and Santi, L., Istituto Tumori, Genova (1979)

    Google Scholar 

  38. E. Farber, in this volume.

    Google Scholar 

  39. Columbano, A., Ledda, G., Rao, P., Rajalashmi, S., and Sarma, D., in this volume.

    Google Scholar 

  40. Solt, D., and Farber, E., 1976. Nature 263, 1506–1507.

    Article  Google Scholar 

  41. Rao, P., Hazlewood, C., and Beall, P., In Cell Growth, ed., C. Nicolini, Plenum Publishing Co. 1982. New York-London, 535–548.

    Google Scholar 

  42. Mellors, R., Kupfer, A., and Hollender, A., 1953. Cancer, 6, 376–384.

    Article  Google Scholar 

  43. Nicolini, C., Beltrame, F., and Grattarola, H., In Cell Growth, ed. C. Nicolini, Plenum Publishing Co. New York-London (1982) 587–608.

    Google Scholar 

  44. Nicolini, C., Finollo, R., and Carlo, P., submitted to Science.

    Google Scholar 

  45. Folkman, J. and Moscona, A., 1978. Nature, 273, 345–348.

    Article  PubMed  CAS  Google Scholar 

  46. Pardell, D., Vogelstein, B., and Coffey, D., 1980. Cell, 19, 527–536.

    Article  Google Scholar 

  47. Dulbecco, R., and Elkington, J. (1975) P.N.A.S.-USA, 72, 1584–88.

    Article  CAS  Google Scholar 

  48. Belmont, A., Kendall, F., and Nicolini, C., 1980. Cell Biophys. (1980) 2, 165–175.

    CAS  Google Scholar 

  49. Puck, T., Waldren, C., Hsie, A., 1972. Proc. Nat. Acad. Sci. U.S.A., 68, 358.

    Google Scholar 

  50. Tanaka, T., Scientific American (1980).

    Google Scholar 

  51. Bradbury, E., and Matthews, H., in Cell Growth, ed. C. Nicolini, Plenum Publishing Co. NATO-Life Science Series (1982) 411–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Nicolini, C. et al. (1982). Chromatin, Nuclei and Water: Alterations and Mechanisms for Chemically- Induced Carcinogenesis. In: Nicolini, C. (eds) Chemical Carcinogenesis. NATO Advanced Study Institutes Series, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4334-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4334-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4336-3

  • Online ISBN: 978-1-4684-4334-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics