Advertisement

Pulse-Carcinogenesis by Ethylnitrosourea in the Developing Rat Nervous System: Molecular and Cellular Mechanisms

  • Manfred F. Rajewsky
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 52)

Abstract

The molecular and cellular mechanisms of malignant transformation and tumorigenesis can probably be best studied in so-called “pulse-carcinogenesis systems”,1,2,3 i.e., in systems where, after a single dose of a short-lived carcinogen sufficient to produce a high tumorigenic effect, the process proceeds autonomously without the complication of continued interaction of the target cell population(s) with the carcinogen. In such systems one can operationally separate the process of carcinogenesis into three phase (A,B,C): Phase A, period of carcinogen interaction with target cells; phase B, time interval between phase A and phase C; and phase C, period beginning with the onset of (clonal) proliferation of tumorigenic cells. More or less synonymous terms are “initiation” for phase A and “expression” (of malignant phenotypes) for phase B. In spite of its obvious importance, least is presently known about phase B which often constitutes the longest of the three phases. Phase B appears to encompass a sequence of phenotypic changes (including acquisition of the capacity for continuous proliferation) in the cells which ultimately become tumorigenic,4,5,6 and represents the period during which, for instance, tumor promotors can exert their pleiotropic effects, i.e., modify gene expression and induce cell proliferation in the target cell population. 7,8,9,10

Keywords

Chemical Carcinogen Prenatal Development Alkylation Product Folding Level Acceptor Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Goth and M. F. Rajewsky, Molecular and cellular mechanisms associated with pulse-carcinogenesis in the rat nervous system by ethylnitrosourea: Ethylation of nucleic acids and elimination rates of ethylated bases from the DNA of different tissues, Z. Krebsforsch. 82: 37 (1974).CrossRefGoogle Scholar
  2. 2.
    M. F. Rajewsky, L. H. Augenlicht, H. Biessmann, R. Goth, D. F. Hülser, O. D. Laerum, and L. Ya. Lomakina, Nervous system-specific carcinogenesis by ethylnitrosourea in the rat: Molecular and cellular mechanisms, in: “Origins of Human Cancer,” Book B: “Mechanisms of Carcinogenesis,” H. H. Hiatt, J. D. Watson and J. A. Winsten, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., p. 709 (1977).Google Scholar
  3. 3.
    M. F. Rajewsky, Possible determinants for the differential susceptibility of mammalian cells and tissues to chemical carcinogens, Arch. Toxicol., Suppl. 3: 229 (1980).Google Scholar
  4. 4.
    O. D. Laerum and M. F. Rajewsky, Neoplastic transformation of fetal rat brain cells in culture following exposure to ethylnitrosourea in vivo, J. Natl. Cancer Inst. 55: 1177 (1975).PubMedGoogle Scholar
  5. 5.
    J. C. Barrett and P. O. P. Ts’o, Evidence for the progressive nature of neoplastic transformation in vitro, Proc. Natl. Acad. Sci. USA 75: 3761 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Kakunaga, K.-Y. Lo, J. Leavitt, and M. Ikenaga, Relationship between transformation and mutation in mammalian cells, in: “Carcinogenesis: Fundamental Mechanisms and Environmental Effects,” B. Pullman, P. O. P. Ts’o, and H. Gelboin, eds., Reidel, Dordrecht, p. 527 (1980).CrossRefGoogle Scholar
  7. 7.
    I. Berenblum, Sequential aspects of chemical carcinogenesis: Skin, in: “Cancer: A Comprehensive Treatise,” Vol. 1, F. F. Becker, ed., Plenum Press, New York, p. 323 (1975).CrossRefGoogle Scholar
  8. 8.
    T. J. Slaga, A. Sivak, and R. K. Boutwell, eds., “Carcinogenesis. A Comprehensive Survey,” Vol. 2, “Mechanisms of Tumor Promotion and Cocarcinogenesis,” Raven Press, New York (1978).Google Scholar
  9. 9.
    I. B. Weinstein, R. A. Mufson, L.-S. Lee, P. B. Fisher, J. Laskin, A. D. Horowitz, and V. Ivanovic, Membrane and other biochemical effects of the phorbol esters and their relative to tumor promotion, in: “Carcinogenesis: Fundamental Mechanisms and Environmental Effects,” B. Pullman, P. O. P. Ts’o, and H. Gelboin, eds., Reidel, Dordrecht, p. 543 (1980).Google Scholar
  10. 10.
    E. Hecker, ed., “Carcinogenesis: Biological Effects of Tumor Promotors,” Raven Press, New York (1981).Google Scholar
  11. 11.
    P. D. Lawley, Carcinogenesis by alkylating agents, in: “Chemical Carcinogens,” C. E. Searle, ed., ACS Monograph No. 173, American Chemical Society, Washington, D.C., p. 83 (1976).Google Scholar
  12. 12.
    A. E. Pegg, Formation and metabolism of alkylated nucleosides: Possible role in carcinogenesis by nitroso compounds and alkylating agents, Adv. Cancer Res. 25: 195 (1977).CrossRefGoogle Scholar
  13. 13.
    D. Grunberger and I. B. Weinstein, Conformational changes in nucleic acids modified by chemical carcinogens, in: “Chemical Carcinogens and DNA,” P. L. Grover, ed., CRC Press, Boca Raton, p. 59 (1979).Google Scholar
  14. 14.
    P. L. Grover, ed., “Chemical Carcinogens and DNA,” CRC Press, Boca Raton (1979).Google Scholar
  15. 15.
    B. Singer, N-nitroso alkylating agents: Formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis, J. Natl. Cancer Inst. 62: 1329 (1979).PubMedGoogle Scholar
  16. 16.
    B. Pullman, P. O. P. Ts’o, and H. Gelboin, eds., “Carcinogenesis: Fundamental Mechanisms and Environmental Effects,” Reidel, Dordrecht (1980).Google Scholar
  17. 17.
    M. F. Rajewsky, Specificity of DNA damage in chemical carcinogenesis, in: “Molecular and Cellular Aspects of Carcinogen Screening Tests,” R. Montesano, H. Bartsch, and L. Tomatis, eds., IARC Scientific Publications No. 27, International Agency for Research on Cancer, Lyon, p. 41 (1980).Google Scholar
  18. 18.
    E. C. Miller and J. A. Miller, The metabolism of chemical carcinogens to reactive electrophiles and their possible mechanisms of action in carcinogenesis, in: “Chemical Carcinogens,” C. E. Searle, ed., ACS Monograph No. 173, American Chemical Society, Washington, D.C., p. 737 (1976).Google Scholar
  19. 19.
    J. A. Miller and E. C. Miller, Perspectives on the metabolism of chemical carcinogens, in: P. Emmelot and E. Kriek, eds., “Environmental Carcinogenesis,” Elsevier/North-Holland Biomedical Press, Amsterdam, p. 25 (1979).Google Scholar
  20. 20.
    J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. USA 72: 5135 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Nagao, T. Sugimura, and T. Matsushima, Environmental mutagens and carcinogens, Ann. Rev. Genet. 12: 117 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Hollstein, J. McCann, and F. A. Angelosanto, Short-term tests for carcinogens and mutagens, Mutat. Res. 65: 133 (1979).Google Scholar
  23. 23.
    R. P. P. Fuchs, N. Schwartz, and M. P. Daune, Hot spots of frameshift mutations induced by the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene, Nature (Lond.) 294: 657 (1981).CrossRefGoogle Scholar
  24. 24.
    R. P. P. Fuchs, J. F. Lefévre, J. Pouyet, and M. P. Daune, Comparative orientation of the fluorene residue in native DNA modified by N-acetoxy-N-2-acetylaminofluorene and two 7-halogeno derivatives, Biochemistry 15: 3347 (1976).PubMedCrossRefGoogle Scholar
  25. 25.
    A. H. Wang, G. J. Quigley, F. J. Kolpak, J. L. Cranford, J. A. Van Boom, G. Van der Macel, and A. Rich, Molecular structure of a left-handed double helical DNA fragment at atomic resolution, Nature (tond.) 282: 680 (1979).CrossRefGoogle Scholar
  26. 26.
    E. Sage and M. Leng, Conformation of poly (dG-dC), poly (dG-dC) modified by the carcinogens N-acetoxy-N-acetyl-2aminofluorene and N-hydroxy-N-2-aminofluorene, Proc. Natl. Acad. Sci. USA 77: 4597 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    R. M. Santella, D. Grunberger, I. B. Weinstein, and A. Rich, Induction of the Z conformation in poly (dG-dC). poly (dG-dC) by binding of N-2-acetylaminofluorene to guanine residues, Proc. Natl. Acad. Sci. USA 78: 1451 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Nordheim, M. L. Pardue, E. M. Lafer, A. Möller, B. D. Stoller, and A. Rich, Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes, Nature (Lond.) 294: 417 (1981).CrossRefGoogle Scholar
  29. 29.
    F. Crick, Split genes and RNA splicing, Science 204: 264 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    J. N. Lapeyre and F. F. Becker, 5-Methylcytosine content of nuclear DNA during chemical hepatocarcinogenesis and in carcinomas which result, Biochem. Biophys. Res. Commun. 87: 698 (1979).Google Scholar
  31. 31.
    T. L. Boehm and D. Drahovsky, Hypomethylation of DNA in Raji cells after treatment with N-methyl-N-nitrosourea, Carcinogenesis 2: 39 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Ehrlich and R. Y.-H. Wang, 5-Methylcytosine in eukaryotic DNA, Science 212: 1350 (1981).Google Scholar
  33. 33.
    A. Pfohl-Leszkowicz, C. Salas, R. P. P. Fuchs, and G. Dirheimer, Mechanism of inhibition of enzymatic deoxyribonucleic acid methylation by 2-(acetylamino)fluorene bound to deoxyribonucleic acid, Biochemistry 20: 3020 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Cairns, The origin of human cancers, Nature (Lond.) 289: 353 (1981).CrossRefGoogle Scholar
  35. 35.
    S. Lavi, Carcinogen-mediated amplification of viral DNA sequences in simian virus 40-transformed Chinese hamster embryo cells, Proc. Natl. Acad. Sci. USA 78: 6144 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    J. German, ed., “Chromosomes and Cancer,” Wiley, New York (1974).Google Scholar
  37. 37.
    M. Radman, Is there SOS induction in mammalian cells? Photochem. Photobiol. 32: 823 (1980).CrossRefGoogle Scholar
  38. 38.
    R. A. Weinberg, Use of transfection to analyze genetic information and malignant transformation, Biochem. Biophys. Acta 651: 25 (1981).Google Scholar
  39. 39.
    M. F. Rajewsky, Proliferative parameters of mammalian cell systems and their role in tumour growth and carcinogenesis, Z. Krebsforsch. 78: 12 (1972).Google Scholar
  40. 40.
    L. G. Lajtha, Stem cell concepts, Differentiation 14: 23 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    P. C. Hanawalt, P. K. Cooper, A. K. Ganesan, and C. A. Smith, DNA repair in bacteria and mammalian cells, Annu. Rev. Biochem. 48: 783 (1979).CrossRefGoogle Scholar
  42. 42.
    T. Lindahl, DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision repair, Progr. Nucleic Acid Res. Mol. Biol. 22: 135 (1979).Google Scholar
  43. 43.
    G. P. Margison and P. J. O’Connor, Nucleic acid modification by N-nitroso compounds, in: “Chemical Carcinogens and DNA,” Vol. 1, P. L. Grover, ed., CRC Press, Boca Raton, p. 111 (1979).Google Scholar
  44. 44.
    A. R. Lehmann and P. Karran, DNA repair, Int. Rev. Cytol. 72: 101 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    E. Seeberg and K. Kleppe, eds., “Chromosome damage and repair,” Plenum Press, New York (1981).Google Scholar
  46. 46.
    G. F. Saunders, ed., “Cell Differentiation and Neoplasia,” Raven Press, New York (1978).Google Scholar
  47. 47.
    T. Graf and H. Beug, Avian leukemia viruses: interaction with their target cells in vivo and in vitro, Biochim. Biophys. Acta 516: 269 (1978).Google Scholar
  48. 48.
    W. Jaenisch, Retroviruses and embryogenesis: Microinjection of Moloney leukemia virus into midgestation mouse embryos, Cell 19: 181 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    P. J. O’Connor, R. Saffhill, and G.P. Margison, N-nitroso compounds: Biochemical mechanisms of action, in: Environmental Carcinogenesis,“ P. Emmelot and E. Kriek, eds., Elsevier/North-Holland Biomedical Press, Amsterdam, p. 73 (1979).Google Scholar
  50. 50.
    S. Ivankovic and H. Druckrey, Transplacentare Erzeugung maligner Tumoren des Nervensystems. I. Äthylnitrosoharnstoff (ÄNH) an BDIX-Ratten, Z. Krebsforsch. 71: 320 (1968).CrossRefGoogle Scholar
  51. 51.
    R. Goth and M. F. Rajewsky, Ethylation of nucleic acids by ethylnitrosourea-1–14C in the fetal and adult rat, Cancer Res. 32: 1501 (1972).PubMedGoogle Scholar
  52. 52.
    R. Goth and M. F. Rajewsky, Persistence of 06-ethylguanine in rat brain DNA: Correlation with nervous system specific carcinogenesis by ethylnitrosourea, Proc. Natl. Acad. Sci. USA 71: 639 (1974).PubMedCrossRefGoogle Scholar
  53. 53.
    R. Müller and M. F. Rajewsky, Immunological quantification by high affinity antibodies of 06-ethyldeoxyguanosine in DNA exposed to N-ethyl-N-nitrosourea, Cancer Res. 40: 887 (1980).PubMedGoogle Scholar
  54. 54.
    R. Müller and M. F. Rajewsky, submitted for publication (1982).Google Scholar
  55. 55.
    E. J. Johansson-Brittebo and H. Tjälve, Studies on the tissue-disposition and fate of N-(14C)ethyl-N-nitrosourea in mice, Toxicology 13: 275 (1979).PubMedCrossRefGoogle Scholar
  56. 56.
    O. D. Laerum, A. Haugen, and M. F. Rajewsky, Neoplastic transformation of foetal rat brain cells in culture after exposure to ethylnitrosourea in vivo, in: “Neoplastic Transformation in Differentiated Epithelial Cell Systems in Vitro,” L. M. Franks and C. B. Wigley, eds., p. 190 (1979).Google Scholar
  57. 57.
    H. Druckrey, B. Schagen, and S. Ivankovic, Erzeugung neurogener Malignome durch einmalige Gabe von Äthylnitrosoharnstoff (ANH) an neugeborene und junge BDIXRatten, Z. Krebsforsch. 74: 141 (1970).Google Scholar
  58. 58.
    H. Druckrey, C. Landschütz, and S. Ivankovic, Transplacentare Erzeugung maligner Tumoren des Nervensystems. II. Äthylnitrosoharnstoff an 10 genetisch definierten Rattenstämmen, Z. Krebsforsch. 73: 371 (1970).CrossRefGoogle Scholar
  59. 59.
    M. F. Rajewsky, Structural modifications and repair of DNA in neuro-oncogenesis by N-ethyl-N-nitrosourea. J. Cancer Res. Clin. Oncol., Suppl., in press (1982).Google Scholar
  60. 60.
    R. H. Denlinger, A. Koestner, and W. Wechsler, Induction of neurogenic tumors in C3HeB/FeJ mice by nitrosourea derivatives: Observations by light microscopy, tissue culture, and electron microscopy, Int. J. Cancer 13: 559 (1974).Google Scholar
  61. 61.
    E.L. Jones, C. E. Searle, and T. W. Smith, Medulloblastomas and other neural tumours in mice treated neonatally with N-ethyl-N-nitrosourea, Acta Neuropathol. 36: 57 (1976).PubMedCrossRefGoogle Scholar
  62. 62.
    P. Kleihues, J. Bücheler, and U. N. Riede, Selective induction of melanomas in gerbils (meriones unguiculatus) following postnatal administration of N-ethyl-N-nitrosourea, J. Natl. Cancer Inst. 61: 458 (1978).Google Scholar
  63. 63.
    O. Stutman, Transplacental carcinogenesis in athymic nude mice, Path. Res. Pract. 165: 170 (1979).Google Scholar
  64. 64.
    D. Stavrou, T. Hanichen, and I. Wriedt-Lübbe, Onkogene Wirkung von Äthylnitrosoharnstoff beim Kaninchen während der pränatalen Periode, Z. Krebsforsch. 84: 207 (1975).CrossRefGoogle Scholar
  65. 65.
    D. Stavrou, E. Dahme, and B. Schröder, Transplacentare neuroonkogene Wirkung von Äthylnitrosoharnstoff beim Kaninchen während der frühen Graviditätsphase, Z. Krebsforsch. 89: 331 (1977).CrossRefGoogle Scholar
  66. 66.
    R. R. Fox, B. A. Diwan, and H. Meier, Transplacental induction of primary renal tumors in rabbits treated with 1-ethyl-1nitrosourea, J. Natl.Cancer Inst. 54: 1439 (1975).PubMedGoogle Scholar
  67. 67.
    B. Singer, W. J. Bodell, J. E. Cleaver, E. H. Thomas, M. F. Rajewsky, and W. Thon, Oxygens in DNA are main targets for ethylnitrosourea in normal and Xeroderma pigmentosum fibroblasts and fetal rat brain cells, Nature (Lond.) 276: 85 (1978).CrossRefGoogle Scholar
  68. 68.
    L. Sun and B. Singer, The specificity of different classes of ethylating agents toward various sites of HeLa Cell DNA in vitro and in vivo, Biochemistry 14: 1795 (1975).Google Scholar
  69. 69.
    C. K. Ingold, “Structure and Mechanism in Organic Chemistry,” Chapter 7, Cornell Univ. Press, Ithaca-New York (1953).Google Scholar
  70. 70.
    W. M. Baird, The use of radioactive carcinogens to detect DNA modifications, in: “Chemical Carcinogens and DNA,” P. L. Groover, ed., CRC Press, Boca Raton, p. 59 (1979).Google Scholar
  71. 71.
    M. F. Rajewsky, R. Müller, J. Adamkiewicz, and W. Drosdziok, Immunological detection and quantification of DNA components structurally modified by alkylating carcinogens (ethylnitrosourea), in: “Carcinogenesis: Fundamental Mechanisms and Environmental Effects,”, B. Pullman, P. O. P. Ts’o, and H. Gelboin, eds., Reidel, Dordrecht, p. 207 (1980).Google Scholar
  72. 72.
    R. Müller and M. F. Rajewsky, Antibodies specific for DNA components structurally modified by chemical carcinogens, J. Cancer Res. Clin. Oncol. 102: 99 (1981).PubMedCrossRefGoogle Scholar
  73. 73.
    R. Müller and M. F. Rajewsky, Sensitive radioimmunoassay for detection of O6-ethyldeoxyguanosine in DNA exposed to the carcinogen ethylnitrosourea in vivo or in vitro, Z. Naturforsch. 33c: 897 (1978).Google Scholar
  74. 74.
    J. Adamkiewicz, W. Eberhardt, U. Langenberg, R. Müller, and M. F. Rajewsky, Monoclonal antibodies for the specific detection and quantification of DNA components structurally modified by alkylating carcinogens, Proc. Sect. Exp. Cancer Res. German Cancer Soc., J. Cancer Res. Clin. Oncol. 99: A21 (1981).Google Scholar
  75. 75.
    R. Saffhill and J. M. Boyle, Detection of carcinogen-DNA adducts by radio-immunoassay, Abstr. Proc. 22nd Ann. Gen. Meeting Brit. Assoc. Cancer Res., Br. J. Cancer 44: 275 (1981).Google Scholar
  76. 76.
    J. Adamkiewicz and M. F. Rajewsky, submitted for publication (1982).Google Scholar
  77. 77.
    A. Loveless, Possible relevance of 06-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides, Nature (Lond.) 223: 206 (1969).CrossRefGoogle Scholar
  78. 78.
    B. Singer and M. Kröger, Participation of modified nucleosides in translation and transcription, Progr. Nucl. Acid Res. Mol. Biol. 23: 151 (1979).CrossRefGoogle Scholar
  79. 79.
    P. Nehls and M. F. Rajewsky, Ethylation of fetal rat brain chromosomal DNA by ethylnitrosourea, Proc. Sect. Exp. Cancer Res. German Cancer Soc., J. Cancer Res. Clin. Oncol. 99: A38 (1981).Google Scholar
  80. 80.
    P. Nehls and M. F. Rajewsky, submitted for publication (1982).Google Scholar
  81. 81.
    M. Renz, P. Nehls, and J. Hozier, Involvement of histone HT in the organization of the chromosome fiber, Proc. Natl. Acad. Sci. USA 74: 1879 (1977).CrossRefGoogle Scholar
  82. 82.
    H. Weintraub and M. Groudine, Chromosomal subunits in active genes have an altered conformation, Science 193: 848 (1976).PubMedCrossRefGoogle Scholar
  83. 83.
    A. Garel and R. Axel, Selective digestion of transcirptionally active ovalbumin genes from oviduct nuclei, Proc. Natl. Acad. Sci. USA 73: 3966 (1976).PubMedCrossRefGoogle Scholar
  84. 84.
    M. J. W. Chang, R. W. Hart, and A. Koestner, Retention of promutagenic 06-ethylguanine in the DNA of various rat tissues following transplacental inoculation with ethylnitrosourea, Cancer Lett. 9: 199 (1980).PubMedCrossRefGoogle Scholar
  85. 85.
    P. J. Abbott and R. Saffhill, DNA synthesis with methylated poly (dA-dT) templates: Possible role of 04-methylthymine as a pro-mutagenic base, Nucleic Acids Res. 4: 761 (1977).PubMedCrossRefGoogle Scholar
  86. 86.
    P. J. Abbott and R. Saffhill, DNA synthesis with methylated poly (dC-dG) templates.Evidence for a competitive nature of miscoding by O6-methylguanine, Biochim. Biophys. Acta 562: 51 (1979).Google Scholar
  87. 87.
    W. L. Russell, E. M. Kelly, P. R. Hunsicker, J. W. Bangham, S. C. Maddux, and E. L. Phipps, Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse, Proc. Natl. Acad. Sci. USA 76: 5818 (1979).PubMedCrossRefGoogle Scholar
  88. 88.
    E. Vogel and A. T. Natarajan, The relation between reaction kinetics and mutagenic action of mono-functional alkylating agents in higher eukaryotic systems. I. Recessive lethal mutations and translocations in Drosophila, Mutat. Res. 62: 51 (1979).Google Scholar
  89. 89.
    E. Vogel and A. T. Natarajan, The relation between reaction kinetics and mutagenic action of mono-functional alkylating agents in higher eukaryotic systems. II. Total and partial sex-chromosome loss in Drosophila, Mutat. Res. 62: 101 (1979).Google Scholar
  90. 90.
    L. Samson and J. Cairns, A new pathway for DNA repair in Escherichia coli, Nature (Lond.) 267: 281 (1977).CrossRefGoogle Scholar
  91. 91.
    P. Jeggo, M. Defais, L. Samson, and P. Schendel, An adaptive response of E. coli to low levels of alkylating agents: Comparison with previously characterized DNA repair pathways, Mol. Gen. Genet. 157: 1 (1977).Google Scholar
  92. 92.
    P. Karran, T. Lindaul, and B. Griffin, Adaptive response to alkylating agents involves alteration in situ of 06-methylguanine residues in DNA, Nature (Lond.) 280: 76 (1979).CrossRefGoogle Scholar
  93. 93.
    R. S. Foote, S. Mitra, and B. C. Pal, Demethylation of 06-methylguanine in a synthetic DNA polymer by an inducible activity in Escherichia coli, Biochem. Biophys. Res. Comm. 97: 654 (1980).CrossRefGoogle Scholar
  94. 94.
    M. Olsson and T. Lindahl, Repair of alkylated DNA in E. coli: Methyl group transfer from 06-methylguanine to a protein cysteine residue, J. Biol. Chem. 255: 10569 (1980).PubMedGoogle Scholar
  95. 95.
    T. Lindahl, DNA methyl transferase acting on 06-methylguanine residues in adapted E. coli, in: “Chromosome Damage and Repair,” E. Seeberg and K. Kleppe, eds., Plenum, New York, in press (1981).Google Scholar
  96. 96.
    J. M. Bogden, A. Eastman, and E. Bresnick, A system in mouse liver for the repair of 06-methylguanine lesions in methylated DNA, Nucleic Acids Res. 9: 3089 (1981).PubMedCrossRefGoogle Scholar
  97. 97.
    J. R. Mehta, D. B. Ludlum, A. Renard, and W. G. Verly, Repair of 06-ethylguanine in DNA by a chromatin fraction from rat liver: Transfer of the ethyl group to an acceptor protein, Proc. Natl. Acad. Sci. USA 78: 6766 (1981).PubMedCrossRefGoogle Scholar
  98. 98.
    A. E. Pegg and G. Hui, Formation and subsequent removal of 06-methylguanine from DNA in rat liver and kidney after small doses of dimethylnitrosamine, Biochem. J. 173: 739 (1978).Google Scholar
  99. 99.
    A. E. Pegg and B. Balog, Formation and subsequent excision of 06-ethylguanine from DNA of rat liver following administration of diethylnitrosamine, Cancer Res. 39: 5003 (1979).PubMedGoogle Scholar
  100. 100.
    A. E. Pegg, M. Roberfroid, H. Bresil, A. Likhachev, and R. Montesano, submitted for publication (1982).Google Scholar
  101. 101.
    H. M. Rabes, R. Kerler, R. Wilhelm, G. Rode, and H. Riess, alkylation of DNA and RNA by L14C3 dimethylnitrosamine in hydroxyurea-synchronized regenerating rat liver, Cancer Res. 39: 4228 (1979).PubMedGoogle Scholar
  102. 102.
    A. E. Pegg, W. Perry, and R. A. Bennett, Effect of partial hepatectomy on removal of 06-methylguanine from alkylated DNA by rat liver extracts, Biochem. J. 197: 195 (1981).Google Scholar
  103. 103.
    P. Kleihues and G. P. Margison, Exhaustion and recovery of repair excision of 06-methylguanine from rat liver DNA, Nature (Lond.) 259: 153 (1976).CrossRefGoogle Scholar
  104. 104.
    G. P. Margison, J. M. Margison, and R. Montesano, Methylated purines in the deoxyribonucleic acid of various Syriangolden-hamster tissues after administration of a hepatocarcinogenic dose of dimethylnitrosamine, Biochem. J. 157: 627 (1976).Google Scholar
  105. 105.
    R. Stumpf, G. P. Margison, R. Montesano, and A. E. Pegg, Formation and loss of alkylated purines from DNA of hamster liver after administration of dimethylnitrosamine, Cancer Res. 39: 50 (1979).PubMedGoogle Scholar
  106. 106.
    R. Montesano, Alkylation of DNA and tissue specificity in nitrosamine carcinogenesis, J. Supramolec. Struct. Cell Biochem., in press (1982).Google Scholar
  107. 107.
    L. Tomatis and F. Cefis, The effects of multiple and single administration of dimethylnitrosamine to hamsters, Tumori 53: 447 (1967).PubMedGoogle Scholar
  108. 108.
    J. G. Lewis and J. A. Swenberg, Differential repair of 06-methylguanine in DNA in rat hepatocytes and non parenchymal cells, Nature (Lond.) 288: 185 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Manfred F. Rajewsky
    • 1
  1. 1.Institut für Zellbiologie (Tumorforschung)Universität Essen (GH)Essen 1Federal Republic of Germany

Personalised recommendations