Advertisement

Autoimmunity to Myelin Basic Protein

  • Robert H. Swanborg
  • James H. Holda
  • Joyce A. Killen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 150)

Abstract

Experimental allergic encephalomyelitis (EAE) is an autoimmune central nervous system (CNS) disease which has been studied extensively, and has provided insight into mechanisms of immune tissue damage and immunologic self-tolerance. In addition, EAE serves as a prototype for human demyelinating diseases such as multiple sclerosis1.

Keywords

Experimental Autoimmune Encephalomyelitis Migration Inhibition Factor Myelin Basic Protein Suppressor Cell Experimental Allergic Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Y. Paterson, Experimental autoimmune encephalomyelitis: induction, pathogenesis, and suppression, in: “Textbook of Immunopathology,” P. A. Miescher and H. J. Muller-Eberhard, eds., Grune and Stratton, New York (1976), p. 179.Google Scholar
  2. 2.
    N. R. Rose, Autoimmune diseases, Scientific American, 244: 80 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    R. H. Swanborg, J. E. Swierkosz, and R. G. Saieg, Studies on the species variability of experimental allergic encephalomyelitis in guinea pigs and rats, J. Immunol. 112: 594 (1974).PubMedGoogle Scholar
  4. 4.
    E. H. Eylar, Amino acid sequence of the basic protein of the myelin membrane, Proc. Nat. Acad. Sci. 67: 1425 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    P. R. Carnegie, Amino acid sequence of the encephalitogenic basic protein from human myelin, Biochem. J. 123: 57 (1971).PubMedGoogle Scholar
  6. 6.
    R. E. Martenson, G. E. Deibler, M. W. Kies, S. S. McKneally, R. Shapira, and R. F. Kibler, Differences between the two myelin basic proteins of the rat central nervous system: a deletion in the smaller protein. Biochim. Biophys. Acta. 263: 193 (1972).PubMedGoogle Scholar
  7. 7.
    R. H. Swanborg, The effect of selective modification of tryptophan, lysine and arginine residues of basic brain protein on encephalitogenic activity, J. Immunol. 105: 865 (1970).PubMedGoogle Scholar
  8. 8.
    L. P. Chao and E. R. Einstein, Localization of the active site through chemical modification of the encephalitogenic protein, J. Biol. Chem. 245: 6397 (1970).PubMedGoogle Scholar
  9. 9.
    C-M. Shaw, E. C. Alvord, Jr., J. Kaku, and M. W. Kies, Correlation of experimental allergic encephalomyelitis with delayed-type skin sensitivity to specific homologous encephalitogen, Ann. N. Y. Acad. Sci. 122: 318 (1965).PubMedCrossRefGoogle Scholar
  10. 10.
    R. P. Lisak and B. Zweiman, In vitro and in vivo immune responses to homologous myelin basic protein in experimental allergic encephalomyelitis, Cell. Immunol. 11:212 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    R. E. Martenson, G. E. Deibler, M. W. Kies, S. Levine, and E. C. Alvord, Jr., Myelin basic proteins of mammalian and submammalian vertebrates: encephalitogenic activities in guinea pigs and rats, J. Immunol. 109: 262 (1972).PubMedGoogle Scholar
  12. 12.
    C-H. J. Chou, R. B. Fritz, F. C-H. Chou, and R. F. Kibler, The immune response of Lewis rats to peptide 66–88 of guinea pig myelin basic protein. I. T cell determinants, J. Immunol. 123: 1540 (1979).PubMedGoogle Scholar
  13. 13.
    G. A. Hashim, Myelin basic protein: structure, function and antigenic determinants, Immunol. Rev. 39: 60 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    T. P. McGraw and R. H. Swanborg, Cell-mediated immunity to myelin basic protein in Lewis rats made unresponsive to experimental allergic encephalomyelitis, Eur. J. Immunol. 8: 905 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    F. J. Waxman, R. B. Fritz, and D. J. Hinrichs, The presence of specific antigen-reactive cells during the induction, recovery, and resistance phases of experimental allergic encephalomyelitis, Cell. Immunol. 49: 34 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    N. K. Gonatas and J. C. Howard, Inhibition of experimental allergic encephalomyelitis in rats severely depleted of T cells, Science. 186: 839 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    J. E. Swierkosz and R. H. Swanborg, Suppressor cell control of unresponsiveness to experimental allergic encephalomyelitis, J. Immunol. 115: 631 (1975).PubMedGoogle Scholar
  18. 18.
    P. Y. Paterson, Passive transfer of allergic encephalomyelitis in rats by means of lymph node cells, J. Exp. Med. 111: 119 (1960).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Levine, E. M. Hoenig, and M. W. Kies, Allergic encephalomyelitis: immunologically specific inhibition of cellular passive transfer by encephalitogenic basic protein, Clin. Exp. Immunol. 6: 503 (1970)PubMedGoogle Scholar
  20. 20.
    P. Y. Paterson, Experimental allergic encephalomyelitis and autoimmune disease, Advanc. Immunol. 5: 131 (1966).CrossRefGoogle Scholar
  21. 21.
    H. S. Panitch and D. E. McFarlin, Experimental allergic encephalomyelitis: enhancement of cell-mediated transfer by concanavalin A, J. Immunol. 119: 1134 (1977).PubMedGoogle Scholar
  22. 22.
    J. R. Richert, B. F. Driscoll, M. W. Kies, and E. C. Alvord, Jr., Adoptive transfer of experimental allergic’encephalomyelitis: incubation of rat spleen cells with specific antigens, J. Immunol. 122: 494 (1979).PubMedGoogle Scholar
  23. 23.
    J. H. Holda, A. M. Welch, and R. H. Swanborg, Autoimmune effector cells. I. Transfer of experimental allergic encephalomyelitis with lymphoid cells cultured with antigen, Eur. J. Immunol. 10: 657 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    B. E. Loveland, P. M. Hogarth, R. Ceredig, and I. F. C. McKenzie, Cells mediating graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection, J. Exp. Med. 153: 1044 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    Werdelin and R. T. McCluskey, The nature and specificity of mononuclear cells in experimental autoimmune inflammations and the mechanisms leading to their accumulation, J. Exp. Med. 133: 1242 (1971).Google Scholar
  26. 26.
    S. Levine and R. Sowinski, Allergic encephalomyelitis: new form featuring polymorphonuclear leukocytes, Science. 171: 498 (1971).PubMedCrossRefGoogle Scholar
  27. 27.
    W. Cammer, B. R. Bloom, W. T. Norton, and S. Gordon, Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: a possible mechanism of inflammatory demyelination, Proc. Nat. Acad. Sci. 75: 1554 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    M. D. Pescovitz, P. Y. Paterson, J. Kelly, and L. Lorand, Serum degradation of myelin basic protein with loss of encephalitogenic activity: evidence for an enzymatic process, Cell. Immunol. 39: 355 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Y. Paterson, E. D. Day, and C. C. Whitacre, Neuroimmunologic diseases: effector cell responses and immunoregulatory mechanisms, Immunol. Rev. 55: 89 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    E. C. Alvord, Jr., C-M. Shaw, S. Hruby, and M. W. Kies, Encephalitogen-induced inhibition of experimental allergic encephalomyelitis: prevention, suppression and therapy, Ann. N. Y. Acad. Sci. 122: 333 (1965).PubMedCrossRefGoogle Scholar
  31. 31.
    R. H. Swanborg, Antigen-induced inhibition of experimental allergic encephalomyelitis. I. Inhibition in guinea pigs injected with nonencephalitogenic modified myelin basic protein, J. Immunol. 109: 540 (1972).PubMedGoogle Scholar
  32. 32.
    R. H. Swanborg, Antigen-induced inhibition of experimental allergic encephalomyelitis. II. Studies in guinea pigs with the small rat myelin basic protein, J. Immunol. 111: 1067 (1973).PubMedGoogle Scholar
  33. 33.
    R. H. Swanborg, Antigen-induced inhibition of experimental allergic encephalomyelitis. III. Localization of an inhibitory site distinct from the major encephalitogenic determinant of myelin basic protein, J. Immunol. 144: 191 (1975).Google Scholar
  34. 34.
    H. C. Rauch, I. N. Montgomery, and R. H. Swanborg, Inhibition of experimental allergic encephalomyelitis by carrier administered prior to challenge with encephalitogenic peptide-carrier conjugate, Eur. J. Immunol. 11: 335 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    D. Turkin and E. E. Sercarz, Key antigenic determinants in regulation of the immune response, Proc. Nat. Acad. Sci. 74: 3984 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    W. W. Bullock, ABA-T determinant regulation of delayed hypersensitivity, Immunol. Rev. 39: 3 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    D. E. McFarlin, S. C-L. Hsu, S. B. Slemenda, F. C-H. Chou, and R. F. Kibler, The immune response against myelin basic protein in two strains of rat with different capacity to develop experimental allergic encephalomyelitis, J. Immunol. 141: 72 (1975).Google Scholar
  38. 38.
    J. E. Swierkosz and R. H. Swanborg, Immunoregulation of experimental allergic encephalomyelitis: conditions for induction of suppressor cells and analyses of mechanism, J. Immunol. 119: 1501 (1977).PubMedGoogle Scholar
  39. 39.
    A. M. Welch and R. H. Swanborg, Characterization of suppressor cells involved in regulation of experimental allergic encephalomyelitis, Eur. J. Immunol. 6: 910 (1976).CrossRefGoogle Scholar
  40. 40.
    A. M. Welch, J. H. Holda, and R. H. Swanborg, Regulation of experimental allergic encephalomyelitis. II. Appearance of suppressor cells during the remission phase of the disease, J. Immunol. 125: 186 (1980).PubMedGoogle Scholar
  41. 41.
    D. O. Willenborg, Experimental allergic encephalomyelitis in the Lewis rat: studies on the mechanism of recovery from disease and acquired resistance to reinduction, J. Immunol. 123: 1145 (1979).PubMedGoogle Scholar
  42. 42.
    J. H. Holda and R. H. Swanborg, Susceptibility of Lewis rats to experimental autoimmune encephalomyelitis after recovery from passively induced disease, Immunol. Commun. 9: 333 (1980).PubMedGoogle Scholar
  43. 43.
    D. J. Hinrichs, C. M. Roberts, and F. J. Waxman, Regulation of paralytic experimental allergic encephalomyelitis in rats: susceptibility to active and passive disease reinduction, J. Immunol. 126: 1857 (1981).PubMedGoogle Scholar
  44. 44.
    J. H. Holda and R. H. Swanborg, Regulation of experimental allergic encephalomyelitis. III. Demonstration of effector cells in tolerant rats, Eur. J. Immunol. 11: 338 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    I. R. Cohen and H. Wekerle, Regulation of autosensitization: the immune activation and specific inhibition of self-recognizing thymus-derived lymphocytes, J. Exp. Med. 137: 224 (1981).CrossRefGoogle Scholar
  46. 46.
    J. P. Antel, B. G. W. Arnason, and M. E. Medof, Suppressor cell function in multiple sclerosis: correlation with clinical disease activity, Ann. Neurol. 5: 338 (1979).PubMedCrossRefGoogle Scholar
  47. 47.
    M. C. Dal Canto and S. G. Rabinowitz, Central nervous system demyelination in Venezuelan equine encephalomyelitis infection: an experimental model of virus-induced myelin injury, J. Neurol. Sci. 49: 397 (1981).CrossRefGoogle Scholar
  48. 48.
    H. M. Wisniewski and B. R. Bloom, Primary demyelination as a nonspecific consequence of a cell-mediated immune reaction, J. Exp. Med. 141: 346 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Robert H. Swanborg
    • 1
  • James H. Holda
    • 1
  • Joyce A. Killen
    • 1
  1. 1.Department of Immunology and MicrobiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations