Thermodynamics and Kinetics of Laser-Induced Structure Changes

  • David Turnbull
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 84)


We suppose that a body is solid when its shear viscosity, η, exceeds the somewhat arbitrarily chosen value of 1015 poise, at which the time constant for shear relaxation would be about one day. 1 At temperatures below its thermodynamic crystallization temperature, Tm, a fluid will solidify heterogeneously by growth from seed crystals, or “nuclei”, to a crystalline body. In this process η is increased discontinuously, by many orders of magnitude, with the advance of the crystal-fluid interface. Alternatively, the fluid may, under certain conditions, solidify homogeneously by the continuous increase of η with falling temperature (or increasing pressure) into the solid range. Experience shows that the temperature, Tg, at which this solidification occurs is always less than Tm and that the solid body formed is amorphous in structure. Amorphous solids can sometimes also form discontinuously by condensation of material from fluids onto substrates held at temperatures below Tg.


Interfacial Tension Thermal Gradient Freeze State Crystal Growth Rate Cube Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.Turnbull, Contemporary Physics 10), 473 (1969).CrossRefGoogle Scholar
  2. 2.
    W.Kauzman, Chem.Rev.43,219 (1948).CrossRefGoogle Scholar
  3. a).
    a) N.G.Ainslie, J.D. MacKenzie and D. Turnbull, J.Phys. Chem.65, 1718 (1961);CrossRefGoogle Scholar
  4. b).
    b) R.L. Cormia, J.D. MacKenzie and D. Turnbull, J. Appl.Phys.34, 2245 (1963).CrossRefGoogle Scholar
  5. 4.
    J.C. Baker and J.W. Cahn, Solidification, pp.23–58, Am.Soc. Metals, Metals Park, Ohio (1971).Google Scholar
  6. 5.
    F. Spaepen and D. Turnbull, Laser Solid Interactions and Laser Processing, AIP Conference Proceedings 50, pp. 73–83 (1979).Google Scholar
  7. 6.
    F. Spaepen and D. Turnbull, to be published in Laser and Electron Beam Processing of Semiconductor Surface, J.M. Poate and J.W. Mayer, Academic Press.Google Scholar
  8. 7.
    D. Turnbull, Physics of Non-Crystalline Solids, (ed. J.W. Prins) pp.41–56, North Holland, Amsterdam (1964).Google Scholar
  9. 8.
    F. Spaepen and D. Turnbull, Rapidly Quenched Metals, (ed. N.J.Grant and B.C. Giessen), pp. 205–229, M.I.T. Press, Cambridge, MA (1976).Google Scholar
  10. 9.
    W.K. Burton, N.Cabrera and F.C. Frank, Phil.Trans.Roy.Soc. (London) 243, pp. 299–258 (1951).MathSciNetMATHCrossRefGoogle Scholar
  11. 10.
    W.C.Herring, Phys. Rev.82, 87 (1951).MATHCrossRefGoogle Scholar
  12. 11.
    W.W. Mullins, Metal Surfaces, pp. 17–66, Am.Soc.Metals, Metals Park, Ohio (1963).Google Scholar
  13. 12.
    K.A. Jackson, Growth and Perfection of Crystals, (ed. R.H. Doremus, B.W. Roberts and D. Turnbull, pp. 319–324, Wiley, NY, (1958).Google Scholar
  14. 13.
    W.W.Mullins and R.F. Sekerka, J.Appl.Phys.34, 323 (1963); 35, 444 (1964).CrossRefGoogle Scholar
  15. 14.
    B. Chalmers, Solidification, pp. 295–310, Am.Soc.Metals, Metals Park, Ohio, (1971).Google Scholar
  16. 15.
    J.W. Cahn, Crystal Growth, (ed. H.S. Peiser), pp.681–690; Pergamon Press, London, (1967).Google Scholar
  17. 16.
    K.A. Jackson, Solidification, pp. 121–154, Am.Soc.Metals, Metals Park, Ohio (1971).Google Scholar
  18. 17.
    D. Turnbull, J. de Physique C4- 1980, 109.Google Scholar
  19. 18.
    D. Turnbull, Solid State Physics, 3 ,pp.225–306, Academic Press, N.Y. (1956).CrossRefGoogle Scholar
  20. 19.a)
    a) F. Spaepen, Acta Met.23, 729, (1975);CrossRefGoogle Scholar
  21. 19b.
    F. Spaepen and R.B. Meyer, Scripta Met.10, 257 (1976).CrossRefGoogle Scholar
  22. 20.
    J.L. Walker, pp. 114–115 , pp. 122–124 , in Ref. 21.Google Scholar
  23. 21.
    B. Chalmers, Principles of Solidification, Wiley, N.Y. (1964).Google Scholar
  24. 22.
    G.A. Colligan and B.S. Bayles, Acta Met.10, 895 (1962).CrossRefGoogle Scholar
  25. 23.
    D. Turnbull and B.G. Bagley, Treatise on Solid State Chemistry (ed. N.B. Hannay) 5, pp. 513–554, Plenum Press, NY, (1975).Google Scholar
  26. 24.
    V.J. Fratello, J.F. Hays and D. Turnbull, J.Appl.Phys. 5J_, 4718 (1980).CrossRefGoogle Scholar
  27. 25.
    L.Czepregi, E.F. Kennedy, J.W.Mayer and T.W. Sigmon, J.Appl. Phys.49, 3906 (1978).CrossRefGoogle Scholar
  28. 26.
    J.Dresner and G.B. Stringfellow, J.Phys. Chem.Solids 29, 303 (1968).CrossRefGoogle Scholar
  29. 27a).
    K.S. Kim and D.Turnbull, J.Appl.Phys.44, 5237 (1973); 45, 3447 (1974);CrossRefGoogle Scholar
  30. 27b).
    J.C. Carballes, R. Clement and B. de Cremoux, Rev. Tech. Thomson-CSF5, 225 (1973 ) ;Google Scholar
  31. 27c).
    Geraldine Gross, R.B. Stephens and D. Turnbull, J. Appl. Phys.48, 1139 (1977).CrossRefGoogle Scholar
  32. 28.
    H.S. Chen and D. Turnbull, J. Appl.Phys.40, 4214 (1969).CrossRefGoogle Scholar
  33. 29.
    B.G. Bagley and H.S. Chen, Laser Solid Interactions and Laser Processing, AIP Conference Proceedings50, 97 (1979).CrossRefGoogle Scholar
  34. 30.
    J. van Vechten, in press, Physique C4-1980 , 15Google Scholar
  35. 31.
    M.W. Geis, D.C. Flanders and Henry I. Smith, Appl.Phys.Lett.35, 71 (1979).CrossRefGoogle Scholar
  36. 32.
    N. Bloembergen, Laser Solid Interactions and Laser Processing, AIP Conf. Proc.50, 1 (1979).CrossRefGoogle Scholar
  37. 33.
    E.M. Breinan, B.H. Kear, C.M. Banas and L.E. Greenwald, Proc. 3rd. Int.Symp. on Super Alloys, p. 435, Claitors Pub.Div., Baton Rouge, LA (1976).Google Scholar
  38. 34.
    P. Liu, R. Yen, N. Bloembergen and R.T. Hodgson, Appl.Phys. Lett.35, 433 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • David Turnbull
    • 1
  1. 1.Division of Applied ScienceHarvard UniversityCambridgeUSA

Personalised recommendations