Pulsed Electron Beam Applications for Semiconductor Annealing

  • Armando Luches
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 84)


Pulsed electron beams are widely used in many fields of research. The most recent use is for semiconductor wafer annealing. Like pulsed laser beams, pulsed electron beams are successfully used to remove lattice damage and to restore electrical properties of ion-implanted devices. There is also the possibility to produce metastable metallurgical phases in silicon single crystal wafers covered with thin layers of metals, because of the rapid heating and cooling possible with pulsed beams of submicrosecond duration. Published and unpublished data about semiconductor annealing and non-equilibrium compound formation with pulsed electron beams are presented together with electron source characteristics for large-area electron beams.


Electron Beam Pulse Electron Beam Silicide Layer Silicon Single Crystal Wafer Unit Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Nation, Particle Accelerators 10, 1 (1979).Google Scholar
  2. 2.
    K. Kanaya and S. Okayama, J. J. Phys. D 5 ,43 (1972).Google Scholar
  3. 3.
    J. F. Gibbons, Laser and Electron Beam Processing of Electronic Materials, C. L. Anderson, G. K. Celler and G. A. Rozgonyi Eds., The Electrochemical Society Inc. 1980, pg. 13.Google Scholar
  4. 4.
    M. von Allmen, S. S. Lau, M. Maenpaa and B. Y. Tsaur, Appl. Phys. Lett.36, 207 (1980).Google Scholar
  5. 5.
    L. Katz and A. S. Penfold, Rev. Mod. Phys.24, 28 (1952).CrossRefGoogle Scholar
  6. 6.
    P. G. Merli, Optik, 56, 205 (1980).Google Scholar
  7. 7.
    A. C. Greenwald, A. R. Kirkpatrick, R. G. Little and J. A. Minnucci, J. Vac. Sci. Technol.16, 1838 (1979).CrossRefGoogle Scholar
  8. 8.
    A. R. Kirkpatrick, J. A. Minnucci and A. C. Greenwald, IEEE Trans. Electron Devices ED-24, 439 (1977).Google Scholar
  9. 9.
    U. S. Patent 3950187 (1974).Google Scholar
  10. 10.
    G. A. Kachurin, N. B. Pridachin and L. S. Smirnov, Sov. Phys. Semicond.9, 946 (1975) .Google Scholar
  11. 11.
    A. C. Greenwald, A. R. Kirkpatrick, R. G. Little and . A. Minnucci, J. Appl. Phys.50, 783 (1979).CrossRefGoogle Scholar
  12. 12.
    R. G. Little, A. C. Greenwald and J. A. Minnucci, IEEE Trans. Nucl. Sci.NS-26, 1683 (1979).CrossRefGoogle Scholar
  13. 13.
    See ref.3, pg. 294.Google Scholar
  14. 14.
    D. E. Davies, E. F. Kennedy, J. J. Comer and J. P. Lorenzo, Appl. Phys. Lett.36., 922 (1980).CrossRefGoogle Scholar
  15. 15.
    A. Luches, V. Nassisi, A. Perrone and M. R. Perrone, Physica C (to be published).Google Scholar
  16. 16.
    G. Ottaviani, J. Vac. Sci. Technol.16, 1112 (1979).CrossRefGoogle Scholar
  17. 17.
    K. N. Tu and J. W. Mayer, Thin Films-Interdiffusion and Reactions, J. M. Poate, K. N. Tu and J. W. Mayer Eds., John Widely, New York, 1978, pg. 359.Google Scholar
  18. 18.
    See ref.3, pg. 485–536.Google Scholar
  19. 19.
    F. Nava, G. Majni, A. Luches, V. Nassisi and E. Janniti, . Physique 5 ,C4–97 (1980).Google Scholar
  20. 20.
    G. J. von Gurp, G. E. J. Eggermont, Y. Tamminga, W. T. Stacy nd J. R. M. Gijsbers, Appl. Phys. Lett.35, 273 (1979).CrossRefGoogle Scholar
  21. 21.
    G. Majni, F. Nava, G. Ottaviani, E. D ’ Anna, G. Leggieri, . Luches and G. Celotti, J. Appl. Phys. (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Armando Luches
    • 1
  1. 1.Physics DepartmentUniversity of LecceLecceItaly

Personalised recommendations