Coupling of Laser Radiation to Metals and Semiconductors

  • Martin F. von Allmen
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 84)


Intense laser beams are currently being used in a whole range of new applications — from growing crystals to forming metallic glasses, and from depositing films to purifying surfaces . All of these actions are ultimately produced by heat into which a smaller or larger part of the beam energy is transformed by various coupling mechanisms. These mechanisms determine not only the amount of heat created, but also its spatial and temporal distribution.


Laser Radiation Dielectric Function Free Carrier Absorption Length Light Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Ia.
    Laser-Solid Interactions and Laser Processing-1978, ed. by S. D. Ferris, H. J. Leamy, J. M. Poate, AIP Proceedings No. 50 (1979)Google Scholar
  2. 1b.
    b -Laser and Electron Beam Processing of Electronic Materials, ed. by C. L. Anderson, G. K. Celler, G. A. Rozgonyi, The Electrochem. Society, 1980Google Scholar
  3. c -.
    c -Laser-and Electron Beam Processing of Materials -1979, ed. by C. W. White, P. S. Peercy, Academic Press 1980. (in press).Google Scholar
  4. 2.
    See e. g. Laser Handbook Vol. 1, ed. by F. T. Arecchi, E. O. Schulz-Dubois, North Holland 1972.Google Scholar
  5. 3.
    See, e. g. F. Wooten, Optical Properties of Solids, Academic Press 1972.Google Scholar
  6. 4.
    N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys, Dover 1958.Google Scholar
  7. 5.
    American Instiute of Physics Handbook, 3rd ed., McGraw-Hill 1972, and other sources.Google Scholar
  8. 6.
    , W. G. Spitzer in Semiconductors and Semimetals Vol. 3, ed. by R. K. Willardson, A. C. Beer, Academic Press 1967, chapter 2.Google Scholar
  9. 7.
    W. B. Gauster, J. C. Bushneil, J. Appl. Phys.41, 3850 (1970).CrossRefGoogle Scholar
  10. 8.
    E. Yoffa, Phys. Rev.B21, 2451 (1980).CrossRefGoogle Scholar
  11. 9.
    , R. Rosenberg, M. Lax, Phys. Rev.112, 843 (1958).CrossRefGoogle Scholar
  12. 10.
    K. G. Svantesson, J. Phys. D. Appl. Phys.12, 425 (1979).CrossRefGoogle Scholar
  13. 11.
    K. G. Svantesson, N. G. Nilsson, J. Phys. C. Solid State Phys.12, 3837 (1979).CrossRefGoogle Scholar
  14. 12.
    A. Lietoila, J. F. Gibbons, Appl. Phys. Lett.34, 332 (1979).CrossRefGoogle Scholar
  15. 13.
    J. Dziewior, W. Schmid, Appl. Phys. Lett, 31, 346 (1977)CrossRefGoogle Scholar
  16. 14.
    L. H. Holway, D. W. Fradin, J. Appl. Phys.46., 279 (1975).CrossRefGoogle Scholar
  17. 15.
    D. W. Fradin, N. Bloembergen, J. P. Letellier, Appl. Phys. Lett.22, 635 (1973).CrossRefGoogle Scholar
  18. 16.
    N. Bloembergen, IEEE J. Quantum Electron.QE-10, 375 (1974).CrossRefGoogle Scholar
  19. 17.
    J. A. Van Vechten, D. Hoonhout, F. W. Saris, Phys. Lett. A (in press).Google Scholar
  20. 18.
    E. Yoffa, Appl. Phys. Lett. (in press).Google Scholar
  21. 19.
    M. R. T. Siregar, M. von Allmen, W. Lüthy, Helv. Phys. Acta 52, 45 (1979).Google Scholar
  22. 20.
    A. J. Gubanov, Quantum Electron Theory of Amorphous Conductors, Consultants Bureau 1965.Google Scholar
  23. 21.
    C. Kittel, Introduction to Solid State Physics, 5th . ed., Wiley 1976, p. 228 ff.Google Scholar
  24. 22.
    M. R. T. Siregar, W. Lüthy, K. Affolter, Appl. Phys. Lett.36, 787 (1980).CrossRefGoogle Scholar
  25. 23.
    , V. I. Bergelson, A. P. Golub, I. V. Nemchinov, S.P. Popov, Sov. Phys. Quantum Electron.3, 288 (1974).CrossRefGoogle Scholar
  26. 24.
    D. C. Smith, J. Appl. Phys.48, 2217 (1977).CrossRefGoogle Scholar
  27. 25.
    E. Stürmer, M. von Allmen, J. Appl. Phys.49, 5648 (1978).CrossRefGoogle Scholar
  28. 26.
    M. von Allmen, P. Blaser, K. Affolter, E. Stürmer, IEEE J. Quantum Electron.QE-14, 85 (1978).CrossRefGoogle Scholar
  29. 27.
    C. Hill in Ref. 1c.Google Scholar
  30. 28.
    K. Affolter, W. Lüthy, M. Wittmer, Appl. Phys. Lett.36, 559 (1980), and references therein.CrossRefGoogle Scholar
  31. 29.
    G. Vitali, M. Bertolotti, L. Stagni in Ref. 1a, p.111, and references therein.Google Scholar
  32. 30.
    M. Born, E. Wolf, Principles of Optics, 5th ed., Pergamon Press 1975.Google Scholar
  33. 31.
    M. von Allmen, unpublished.Google Scholar
  34. 32.
    L. I. Goldfisher, J. Opt. Soc. Am.55, 247 (1965).CrossRefGoogle Scholar
  35. 33.
    D. M. Ryter, Maximale und mittlere Intensität bei der Ueber-lagerung von transversalen Moden, University of Bern (1975).Google Scholar
  36. 34.
    A. G. Fox, T. Li, Proc. IEEE 51, 80 (1963).CrossRefGoogle Scholar
  37. 35.
    A. G. Cullis, H. C. Webber in Ref. 1b, 220A. G. Cullis, H. C. Webber in Ref. 1b, p. 220.Google Scholar
  38. 36.
    H. S. Carlslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd. ed., Oxford University Press 1959.Google Scholar
  39. 37.
    , This solution was also given by F. W. Dabby, U.-C. Paek, IEEE J. Quantum Electron.QE-8, 106 (1972). 38. M. von Allmen in Ref. 1a, p. 43.CrossRefGoogle Scholar
  40. 39.
    M. von Allmen, S. S. Lau, M. Mäenpää, B. Y. Tsaur, Appl. Phys. Lett. 36, 207 (1980).Google Scholar
  41. 40.
    M. von Allmen, W. Lüthy, J-P. Thomas, M. Fallavier, J.M. Akowsky, R. Kirsch, M.-A. Nicolet, M. E. Roulet, Appl. hys. Lett.34, 82 (1979).CrossRefGoogle Scholar
  42. 41.
    D. H. Auston, J. A. Golovchenko, A. L. Simons, R. E. Slusher, P. R. Smith, C. M. Murko, T. N. C. Venkatesan, in Ref. 1a, p. 11.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Martin F. von Allmen
    • 1
  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland

Personalised recommendations