Electron Radiation Defects in TaC1−x and TiC0.97

  • J. Morillo
  • C. H. de Novion
  • J. Dural


The electrical resistivity changes of TaC0.99 and TaC0.80 have been measured at 21 K during irradiation with electrons of incident energies ranging from 2.5 to 0.25 MeV: a non-zero production rate is observed, even at the lowest energies. The recovery of defects was followed up to 400 K for TaC0.99 and TiC0.97 irradiated with 2.25 MeV electrons and up to 160 K for TaC0.80 irradiated with 0.75 MeV electrons. The results are compared to fast neutron radiation damage data. For TiC0.97 and TaC0.99, the contributions of the different defects to the production rates and recovery spectra are tentatively separated, and a rough estimate of Frenkel pair resistivities is given.


Titanium Carbide Migration Energy Recovery Curve Vanadium Carbide Recovery Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.G. Childs, J.C. Ruckman, and K. Buxton, in.: “Carbides in Nuclear Energy”, Vol. 2, Macmillan and Co Ltd, London (1964), p. 849.Google Scholar
  2. 2.
    M.S. Koval’chenko, and V.V. Ogorodnikov, Poroshkovaya Metallurgiya 9:48 (1966).Google Scholar
  3. 3.
    M. Iseki, S. Ushijima, and T. Kirihara, Kakuyugo Kenkyu 43:127 (1981) (in Japanese).Google Scholar
  4. 4.
    D. Dew-Hughes, and R. Jones, Appl. Phys. Lett. 19:565 (1969).Google Scholar
  5. 5.
    J.D. Venables and R.G. Lye, Phil. Mag. 19:565 (1969).CrossRefGoogle Scholar
  6. 6.
    D.K. Chatterjee, and H.A. Lipsitt, J. Less Common Met. 70:111 (1980).CrossRefGoogle Scholar
  7. 7.
    J. Morillo, C.H. de Novion and J. Dural, Rad. Effects 55:67 (1981).CrossRefGoogle Scholar
  8. 8.
    M. Lequeux, Thèse de 3ème cycle, Orsay, France (1972).Google Scholar
  9. 9.
    A.L. Giorgi, E.G. Szklarz, E.K. Storms, A.L. Bowman, and B.T. Matthias, Phys. Rev. 125:837 (1962).CrossRefGoogle Scholar
  10. 10.
    J. Durai, Thèse d’Université, Poitiers, France (1980).Google Scholar
  11. 11.
    D. Lesueur, to be published in Phil. Mag. (1981).Google Scholar
  12. 12.
    J. Linhard, M. Scharf, and H.E. Schiott, Dansk. Vid. Selsk., Mat. Fijs. Medd. 33:1 (1963).Google Scholar
  13. 13.
    K.B. Winterbon, S. Sigmund, and J.B. Sanders, Dansk. Vid. Selsk., Mat. Fijs. Medd. 37:14 (1970).Google Scholar
  14. 14.
    O. S. Oen, Report ORNL-4897, Oak Ridge, USA (1973).Google Scholar
  15. 15.
    M.T. Robinson, Phil. Mag. 12:741 (1965).CrossRefGoogle Scholar
  16. M.T. Robinson, Phil. Mag. 17:639 (1969).CrossRefGoogle Scholar
  17. 16.
    “Vacancies and Interstitials in Metals”, A. Seeger, D. Schumacher, W. Schilling and J. Diehl, ed., North-Holland Publishing Company, Amsterdam (1970).Google Scholar
  18. 17.
    W.F. Brizes and E.I. Salkowitz, Scripta Met., 3:659 (1969).CrossRefGoogle Scholar
  19. 18.
    S. Sarian, J. Appl. Phys. 39:3305 (1968).CrossRefGoogle Scholar
  20. S. Sarian, J. Appl. Phys. 40:3515 (1969).CrossRefGoogle Scholar
  21. 19.
    J. Morillo, to be published.Google Scholar
  22. 20.
    W.S. Williams, Prog. Solid. State Chem., 6:57 (1971).CrossRefGoogle Scholar
  23. 19.
    J. Morillo, C.H. de Novion and J.P. Senateur, J. Phys. Colloq. 40:C5–348 (1979). J. Morill, to be published.CrossRefGoogle Scholar
  24. 20.
    W.S. Williams, Prog. Solid. State Chem., 6:57 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. Morillo
    • 1
  • C. H. de Novion
    • 1
  • J. Dural
    • 1
  1. 1.SESI, Bât. 31, CENFontenay-aux-RosesFrance

Personalised recommendations