Characterization of TiB2-Ni Ceramics by Transmission and Analytical Electron Microscopy

  • P. S. Sklad
  • C. S. Yust


Some of the physical properties of the transition metal diboride TiB2, especially high hardness and chemical stability, suggest use of this compound as a wear-resistant material in valve components in coal liquefaction plants and as a cutting tool material.1 The preparation of dense, single-phase, poly-crystalline bodies of this refractory compound (m.p. = ∿3253 K), however, requires a sintering temperature approaching 2300 K and is accompanied by extensive grain growth.2 In addition, experience has shown that single phase TiB2 polycrystals are relatively fracture sensitive.3 A method that has been explored for improving the fracture toughness of TiB2 bodies is liquid phase sintering with metals, especially iron, cobalt, and nickel.1–4 The use of a metal-based bonding phase also offers the possibility of densification at temperatures much lower than the sintering temperature for pure TiB2 through the formation of TiB2-metal eutectics. In addition to promoting densification under less rigorous conditions, the use of the metal bonding phase has been found to improve the fracture strength of TiB2.1,5


Analytical Electron Microscopy Electron Energy Loss Spectroscopy Convergent Beam Electron Diffraction Electron Energy Loss Spectrum Intergranular Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. F. Yen, C. S. Yust, and G. W. Clark, Enhancement of Mechanical Strength in Hot Pressed TiB2 Composites by the Addition of Fe and Ni, in: “New Developments and Applications in Composites,” Transactions, AIME, Warrendale, PA, 317 (1979).Google Scholar
  2. 2.
    H. Pastor, Metallic Borides: Preparation of Solid Bodies-Sintering Methods and Properties of Solid Bodies, in: “Boron and Refractory Borides,” V. I. Matkovich, ed., Springer Verlag, New York, 457 (1977)CrossRefGoogle Scholar
  3. 3.
    V. Castaing and P. Costa, Properties and Uses of Diborides, in: “Boron and Refractory Borides,” V. I. Matkovich, ed., Springer Verlag, New York 390 (1977).CrossRefGoogle Scholar
  4. 4.
    G. V. Samsonov, Nature of the Interaction between Titanium Boride and the Iron-Group Metals, Henry Brutcher, translation HB NO. 4122, Metallovedenie i Obrabotka Metallov, 1:35 (Jan. 1958).Google Scholar
  5. 5.
    V. J. Tennery, C. B. Finch, C. S. Yust, and G. W. Clark, Property Structure Correlations for TiB2 Based Ceramics Densified Using Active Liquid Metals, this meeting.Google Scholar
  6. 6.
    J. D. Schobel and H. H. Stadelmaier, Die Nickelecke im Dreistoffsystem Nickel-Titan-Bor, Metallwissenchaft und Technik, 19(7):715 (1965).Google Scholar
  7. 7.
    J. Bentley, N. J. Zaluzec, E. A. Kenik, and R. W. Carpenter, Optimization of an Analytical Microscope for X-Ray Microanalysis: Instrumental Problems, in: “Scanning Electron Microscopy,” 2:581 (1979).Google Scholar
  8. 8.
    N. J. Zaluzec, Quantitative X-ray Microanalysis: Instrumental Considerations and Applications to Materials Science, Ch.4 in: “Introduction to Analytical Electron Microscopy”, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds., Plenum Press, New York, N.Y, 121 (1979).Google Scholar
  9. 9.
    N. J. Zaluzec, An Analytical Electron Microscopy Study of the Omega Transformation in a Zirconium-Niobium Alloy, Ph.D. Thesis, University of Illinois (1978); Oak Ridge National Laboratory report ORNL/TM-6705.Google Scholar
  10. 10.
    J. Bentley, Systems Background in X-ray Microanalysis, to be published in: “The Proceeding of the Third Workshop on Analytical Electron Microscopy, July 13-17, 1981” Vail, ColoradoGoogle Scholar
  11. 11.
    B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rachham, The Symmetry of Electron Diffraction Zone Axis Patterns, Phil. Trans. Roy. Soc A281:171 (1976).Google Scholar
  12. 12.
    “International Tables for X-ray Crystallography,” published for the Internatinal Union of Crystallography by Kynoch Press, Birmingham, England Vol. I, 25-29 (1969).Google Scholar
  13. 13.
    J. W. Steeds, Convergent Beam Electron Diffraction, Ch. 15 in: “Introduction to Analytical Electron Microscopy,” J. J. Hren, J. I. Goldstein, and D. C. Joy, eds. Plenum Press, New York, N.Y 387 (1979).Google Scholar
  14. 14.
    N. J. Zaluzec, Gaussian Optics Calculations of the Parameters of a Magnetic Sector Energy Analyzer, in: “Proc. Workshop on Analytical Electron Microscopy,” (Cornell University, July 24-28, 1978) P. J. Fejes, ed., Materials Science Center Cornell University, Ithaca, N.Y 40, (1978).Google Scholar
  15. 15.
    R. F. Egerton, Formulae for Light-Element Microanalysis by Electron Energy-Loss Spectrometry, Ultramicroscopy 3:243 (1978).CrossRefGoogle Scholar
  16. 16.
    R. F. Egerton, Ultramicroscopy 4:169 (1979).CrossRefGoogle Scholar
  17. 17.
    R. F. Egerton, SIGMAL: A Program for Calculating L-shell Ionization Cross Sections, “Proc. 39th Annu. EMSA Meeting,” Atlanta, (August 1981.).Google Scholar
  18. 18.
    L. A. Grunes and R. D. Leapman, Optically Forbidden Excitations of the 3s Subshell in the 3d Transition Metals by Inelastic Scattering of Fast Electrons, Phys. Rev. B22:3778 (1980).Google Scholar
  19. 19.
    J. Bentley, G. L. Lehman, and P. S. Sklad, Background Fitting for Electron Energy Loss Spectra, to be published in: “The Proceeding of the Third Workshop on Analytical Electron Microscopy, July 13-17, 1981,” Vail, Colorado.Google Scholar
  20. 20.
    P. S. Sklad, J. Bentley, and G. L. Lehman, Quantification of Energy Loss Measurements with the Use of K and L Absorption Edges, Ibid.Google Scholar
  21. 21.
    H. H. Stadelmaier, Metal-Rich Metal-Metalloid Phases, in: “Developments in the Structural Chemistry of Alloy Phases,” B. C. Giessen, ed., Plenum Press, New York, N.Y. 141 (1969).Google Scholar
  22. 22.
    E. Ganglberger, H. Nowotny, and F. Benesovsky, Neue Boride Mit Cr23 C6-Struktur, Monatsch. für Chemie 96: 1144 (1969).CrossRefGoogle Scholar
  23. 23.
    H. J. Goldschmidt, “Interstitial Alloys,” Plenum Press, New York, N.Y., 254 (1967).Google Scholar
  24. 24.
    J. M. Leitnaker, G. A. Potter, D. J. Bradley, J. C. Franklin, and W. R. Laing, The Composition of Eta Carbide in Hastelloy N after Aging 10,000 h at 815°C, Met. Trans. 9A:397 (1978).Google Scholar
  25. 25.
    J. M. Leitnaker, R. L. Klueh, and W. R. Lain, The Composition of Eta Carbide Phase in 2 1/4 Cr-1 Mo Steel, Met. Trans. 6A:1949 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • P. S. Sklad
    • 1
  • C. S. Yust
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations