Structure-Property Correlations for TiB2-Based Ceramics Densified using Active Liquid Metals

  • V. J. Tennery
  • C. B. Finch
  • C. S. Yust
  • G. W. Clark


The compound TiB2 has numerous exceptional properties including high hardness, high melting temperature, high electrical conductivity, and nonreactivity with various liquid metals. These make it an attractive candidate for technological applications, such as cutting tools, valve trim for erosive environments, and cathodes in Hall-Heroult cells for aluminum smelting. In general, such applications require fabrication of TiB2 into various shapes, and the latter requirement dictates the production of high-density polycrystalline ceramic bodies. The preparation and characterization of TiB2-based materials have already been the subject of numerous previous works, exemplified by the references (1–9). These include data on the phase equilibria in TiB2 containing systems,1,3,9 the wettability of TiB2 by various metals,1,3,4 and the results of property determinations on TiB2-based specimens.


Flank Wear TiB2 Particle Flexure Strength Pyramid Indenter Ceramic Fabricate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Samsonov, Boron, Its Compounds and Alloys, AEC tr 5032, part 2, Kiev (1960), pp. 520-526.Google Scholar
  2. 2.
    B. Post, F. W. Glaser, and D. Moskowitz, “Iransition Metal Diborides,” Acta Metallurgica, 2 20–25 (1954).CrossRefGoogle Scholar
  3. 3.
    J. D. Schobel and H. H. Stadelmaier, Die Nickelecke in Die Dreistoffsystem Nickel-Titan-Bor, Metall 19, 715 (1965).Google Scholar
  4. 4.
    I. langermann, “Beitrag zum Verhalten von Schwermetallboriden gegenüber Bindemetalien,” Neue Hutte 8(6) 359–365 (1963).Google Scholar
  5. 5.
    D. R. Prendse and P. L. Pratt, “A Study of the Physical and Mechanical Properties of Cemented Borides,” in Special Ceramics 5, P. Popper, editor, Manchester, pp. 135–145.(1972).Google Scholar
  6. 6.
    R. C. Brewer, “Cemented Borides as Tool Materials,” Engineers’ Digest 20(5), 205–208 (1959).Google Scholar
  7. 7.
    Yu. B. Kuzma and M. V. Chepiga, “An X-Ray Diffraction Investigation of the Systems Ti-Ni-B-Mo-Ni-B, and W-Ni-B,” Soviet Powder Metallurgy 10 832–835 (1969).CrossRefGoogle Scholar
  8. 8.
    H. J. Juretschke and R. Steinitz, “Hall Effect and Electrical Conductivity of Transition Metal Diborides,” J. Phys. Chem. Solids, 4 118–127 (1958).CrossRefGoogle Scholar
  9. 9.
    V. F. Funke and S. I. Yudkovskii, “O Bzaimodeistvii Boridov Perekhodnykh Metallov c Metallami Gruppy Zheleza,” Issledovania Stalei i Splavov, Moscow, pp. 108-113 (1964).Google Scholar
  10. 10.
    E. D. Case, J. R. Smyth, and O. Hunter, “Grain Size Dependence of Microcrack Initiation in Brittle Materials,” J. Mater. Sci. 15, 149–153 (1980).CrossRefGoogle Scholar
  11. 11.
    C.F. Yen, C. S. Yust, and G. W. Clark, “Enhancement of Mechanical Strength in Hot-Pressed TiB Composites by the Additional Fe and Ni,” in New Developments and Applications in Composites, Transactions, AIME, Warrendale, Penn., 317–330 (1979).Google Scholar
  12. 12.
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion Nonmetallic Solids, Thermophysical Properties of Matter, Vol. 13, Plenum Press, New York (1977).Google Scholar
  13. 13.
    V. I. Matkovich, Boron and Refractory Borides, Springer-Verlag, New York (1977).CrossRefGoogle Scholar
  14. 14.
    C. S. Yust and P. S. Sklad, “Characterization of TiB-Ni Ceramics by Transmission and Analytical Electron Microscopy,” in this Conference.Google Scholar
  15. 15.
    P. I. B. Shaffer, Materials Index No. 1, Plenum Press, New York (1964).Google Scholar
  16. 16.
    W. Mason, Acoustic Properties of Solids, Section IIIF-1, Amer. Inst. of Physics Handbook, 74-79 (1957).Google Scholar
  17. 17.
    G. R. Gessel, “Effect of Minor Alloys on the Strength and Swelling Behavior of Austenitic Stainless Steel,” ORNL/TM-6359, pp. 72-75 (1979).Google Scholar
  18. 18.
    K. Nakamo, H. Matsubara, and T. Imura, “High-Temperature Hardness of Titanium Diboride Single Crystal,” Japan J. Appl. Phys., 13, (6), 1005–1010 (1974).CrossRefGoogle Scholar
  19. 19.
    K. Nakamo, T. Imura, and S. Takenchi, “Hardness Anisotropy of Single Crystals of IVa-Diborides,” Japan. J. Appl. Phys. 12, (2), (1973).Google Scholar
  20. 20.
    J. H. Westbrook, “The Temperature Dependence of Hardness of Some Common Oxides,” Rev. Hautes Temper. et Refract, 3, 47 (1966).Google Scholar
  21. 21.
    L. Kaufman and E. V. Clougherty, “Investigation of Boride Compounds for Very High Temperature Applications,” Report RTD-TDR-63-4096, Part 1, ManLabs, Inc., Cambridge, Mass., (1963).Google Scholar
  22. 22.
    F. F. Lange, H. J. Siebeneck, and D. P. H. Hasselman, J. Amer. Ceram. Soc. 59 454–458 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • V. J. Tennery
    • 1
  • C. B. Finch
    • 1
  • C. S. Yust
    • 1
  • G. W. Clark
    • 1
  1. 1.Structural Ceramics Group, Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations