High Temperature Creep of Some WC-Co Alloys

  • Frédéric Osterstock


The high temperature deformation behavior of tungsten carbidecobalt alloys has been little investigated since the works of G. Altmeyer (1), W. Dawhil (2) and J.T. Smith and J.D. Wood (3). Moreover they are mostly concerned either with low cobalt volumic ratio or with temperatures less than 1000°C: the controlling processes which were proposed were diffusional vacancies flow in the binder and dislocation activity in the carbide phase. Only recently, some work were performed at temperatures as high as 1400°C by W.S. Williams and al. (4) (5) (6) with samples containing up to 10% of cobalt in volume. Deformation of the carbide phase was proposed as a possible controlling mechanism, but transmission electron microscopy did not allow any hypothesis about the mechanism acting in the WC crystals. In most cases the results are limited, due to lack of deformation-sometimes less than 2% - and the still high stresses which must be applied. Furthermore it is difficult to compare the results since they concern materials which have different cobalt volumic ratios, different mean diameters of the carbide crystals and sometimes additions of cubic carbides.


Creep Rate Apparent Activation Energy Tungsten Carbide Stress Exponent Carbide Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Altmeyer, O. Jung, Z. Metallkde. 52:576. (1961)Google Scholar
  2. 2.
    W. Dawhil, G. Altmeyer, Z. Metallkde. 54:645 (1963).Google Scholar
  3. 3.
    J. T. Smith, J. D. Wood, Acta Met. 16:1219 (1968).CrossRefGoogle Scholar
  4. 4.
    J. G. Baldoni, W. S. Williams, Ceram. Bull. 57:1100 (1978).Google Scholar
  5. 5.
    S. R. Schenk, R. J. Gottschall, W. S. Williams, Mat. Sci. Eng. 32:229 (1978)CrossRefGoogle Scholar
  6. 6.
    R. J. Gottschall, W. S. Williams, I. D. Ward, Phil. Mag. A, 41:1 (1980).CrossRefGoogle Scholar
  7. 7.
    T. G. Langdon, F. A. Mohammed, J. Aust. Inst. Met. 22:188 (1977).Google Scholar
  8. 8.
    M. J. Murray, D. C. Smith, J. Mat. Sci. 8:1706 (1978).CrossRefGoogle Scholar
  9. 9.
    M. K. Mall, Thesis, University of Sarreland, F. R. G. (1964).Google Scholar
  10. 10.
    F. Ueda, H. Doi, F. Fujiwara, H. Masatomi, Y. Oosawa, Trans. Jap. Inst. Met. 16:591 (1975).Google Scholar
  11. 11.
    R. L. Coble, J. Appl. Phys. 34:1679 (1963).CrossRefGoogle Scholar
  12. 12.
    F.R.N. Nabarro, “Rep. Conf. Strength Solids” 1947/1948, p. 75.Google Scholar
  13. 13.
    C. Herring, J. Appl. Phys. 21:437 (1950).CrossRefGoogle Scholar
  14. 14.
    J. Friedel, “Dislocations,” Pergamon Press (1964).Google Scholar
  15. 15.
    M. Suery, Thesis, University of Metz, France (June 1979).Google Scholar
  16. 16.
    S. Hagege, Thesis, University of Caen, France (July 1979).Google Scholar
  17. 17.
    M. H. Hon and R. F. Davis, J. Mat. Sci. 14; 2411 (1979).CrossRefGoogle Scholar
  18. 18.
    S. Sarian, J. Appl. Phys., 40:3515 (1969).CrossRefGoogle Scholar
  19. 19.
    D. L. Kohlstedt, W. S. Williams, J. B. Woodhouse, J. Appl. Phys. 41:4476 (1970).CrossRefGoogle Scholar
  20. 20.
    J. L. Martin, Thesis, University of Paris-Nord, France (February 1972).Google Scholar
  21. 21.
    J. Weertman, Trans. ASM 61:681 (1968).Google Scholar
  22. 22.
    A. H. Cottrell, M. A. Jaswon, Proc. Roy. Soc. A199:104 (1949).Google Scholar
  23. 23.
    J. Bardeen and C. Herring, “Atom Movements,” (1951).Google Scholar
  24. 24.
    F.R.N. Nabarro, Phil. Mag. 16:231 (1967).CrossRefGoogle Scholar
  25. 25.
    K. A. Padmanabhan, Mat. Sci. Eng. 29:1 (1977).CrossRefGoogle Scholar
  26. 26.
    A. Arieli and A. K. Mukherjee, Mat. Sci. Eng. 9:191 (1979).Google Scholar
  27. 27.
    R. C. Gifkins, Met. Trans. 7A:1225 (1976).Google Scholar
  28. 28.
    R. G. Gifkins and T. G. Langdon, Mat. Sci. Eng. 40:293 (1979).CrossRefGoogle Scholar
  29. 29.
    K. A. Padmanabhan, Mat. Sci. Eng. 40:285 (1979).CrossRefGoogle Scholar
  30. 30.
    R. G. Gifkins and T. G. Langdon, Mat. Sci. Eng. 40:293 (1979).CrossRefGoogle Scholar
  31. 31.
    A. Ball and M. M. Hutchinson, J. Mat. Sci. 3:1 (1979).Google Scholar
  32. 32.
    A. K. Mukherjee,. Mat. Sci. Eng. 8:83 (1921).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Frédéric Osterstock
    • 1
  1. 1.Equipe Matériaux-Microstructure, Laboratoire de Cristallographie et Chimie du Solide, L.A. 251ISMRA-UniversitéCaen CedexFrance

Personalised recommendations