Deformation Characteristics and Mechanical Properties of Hardmetals

  • E. A. Almond


Fundamental deformation characteristics of transition metal interstitial-compounds are briefly reviewed, and reference is made to experimental and proven metallic cermet systems using WC/Co hardmetals as a basis for comparison. Emphasis is given to the need for a critical approach to mechanical testing of hardmetals and for caution in interpreting results for empirical and intrinsic property measurements. Deformation mechanisms and microstructuralmechanical property correlations are examined for elastic and plastic properties, strength, fracture, fracture toughness and fatigue.

Some theoretical models for the microstructural dependence of strength and toughness of hardmetals are discussed in relation to experimental observations and their generality is examined. An attempt is made to define the role played by the fundamental properties of the constituents in determining the mechanical behaviour of metallic cermets. A summary is given of the present state of understanding of mechanical properties, and directions are specified for future research to improve the effectiveness of design and application of hardmetals.


Fracture Toughness Crack Growth Rate Tungsten Carbide Deformation Characteristic Tool Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. Exner, Physical and chemical nature of cemented carbides Int. Met. Rev. 24: 149 (1979).CrossRefGoogle Scholar
  2. 2.
    K. J. A. Brookes, “World Directory and Handbook of Hardmetals”, Engineers’ Digest, London, 2nd Ed. (1979).Google Scholar
  3. 3.
    C. Bonjour, New developments in cemented carbide cutting tools, Wear, 62:83 (1980).CrossRefGoogle Scholar
  4. 4.
    R. Morrell. National Physical Laboratory.Google Scholar
  5. 5.
    W. R. Buessem, Thermal shock testing, J. Am. Ceram. Soc., 38:15 (1955).CrossRefGoogle Scholar
  6. 6.
    Y. W. Mai and A. G. Atkins, Fracture strength behaviour of tool carbides subjected to thermal shock, J. Am. Ceram. Soc., 54:593 (1975).Google Scholar
  7. 7.
    C. S. G. Ekemar, S. A. O. Iggström, and G. K. A. Heden, Influence of some metallurgical parameters of cemented carbide on the sensitivity to thermal fatigue cracking at cutting edges, in “Materials for Metal Cutting”, ISI Publication 126, Iron and Steel Inst., London (1970).Google Scholar
  8. 8.
    W. Dawihl and M. K. Mal, Contribution to the study of the deformation behaviour and structure of WC-TiC-TaC-Co alloys, Cobalt, 26:25, (1965).Google Scholar
  9. 9.
    J. H. Westbrook and E. R. Stover, Carbides for high-temperature applications, in “High Temperature Materials and Technology”, Wiley, New York (1967).Google Scholar
  10. 10.
    A. Miyoshi and A. Hara, High temperature hardness of WC, TiC, TaC, NbC and their mixed carbides J. Jap. Soc. Powder and Powder Met., 12:24 (1965).Google Scholar
  11. 11.
    G. M. Schwab and A. Krebs, Measurement and theory of the variation in hardness with temperature of transition metal carbides, Plansee für Pulvermet 19:91 (1971).Google Scholar
  12. 12.
    A. G. Atkins and D. Tabor, Hardness and deformation of solids at very high temperatures, Proc. Roy. Soc., 292A:441 (1966).Google Scholar
  13. 13.
    Cobalt Monograph, Centre d’Information du Cobalt, Belgium (1960).Google Scholar
  14. 14.
    L. J. Aschan, I. Johansson and L. E. Gustafsson, High Temperature properties of WC-Co cemented carbides, in “Proc. 4th Nordic High Temp. Symp. — NORTEMPS 75”.Google Scholar
  15. 15.
    F. Ueda, H. Doi, F. Fujiwara and H. Masatomi, Bend deformation and fracture of WC-Co alloys at elevated temperatures, Trans. J.I.M., 18:247, (1977).Google Scholar
  16. 16.
    E.M. Trent and A. Carter, Sintered titanium carbide alloys, in “Symposium on Powder Metallurgy”, ISI Special Report 58, Iron and Steel Inst., London (1954).Google Scholar
  17. 17.
    S. R. Schenck, R. J. Gottschall and W. S. Williams, Deformation of cemented carbides: high temperatures, stress relaxation, and strain-rate dependence, J. Mat. Sci., 32:229 (1978).Google Scholar
  18. 18.
    A. G. Atkins, High temperature hardness and creep, in “The Science of Hardness Testing and its Research Applications”, Am. Soc. Met., Metals Park, Ohio (1973).Google Scholar
  19. 19.
    B. Roebuck and E. A. Almond, A comparison of Co and Ni alloys containing small amounts of W and C, in “Proc. 10th Plansee Seminar” Vol. 1. Metallwerk Plansee, Austria (1981).Google Scholar
  20. 20.
    R. P. Wahi and B. Ilschner, Fracture behaviour of composites based on Al2O3-TiC, J. Mater. Sci. 15:875 (1980).CrossRefGoogle Scholar
  21. 21.
    D. Moskowitz, M. J. Ford and M. Humenik, Jr., High strength tungsten carbides. Int. J. Powder Met., 6:55 (1970).Google Scholar
  22. 22.
    L. Prakash, H. Holleck, F. Thummler and G. Spriggs, WC-cemented carbides with improved binder alloys, in “Towards Improved Performance of Tool Materials” to be published, Metals Society, London.Google Scholar
  23. 23.
    E. A. Almond, Towards improved tests based on fundamental properties, in: “Towards Improved Performance of Tool Materials”, to be published, Metals Society, London.Google Scholar
  24. 24.
    S. Timoshenko and J. N. Goodier, “Theory of Elasticity”, McGraw Hill, London (1951).Google Scholar
  25. 25.
    E. A. Almond and B. Roebuck, The transverse rupture test for hardmetals, Met. Sci., 11:458 (1977).Google Scholar
  26. 26.
    M. J. Kerper, L. E. Mong, M. B. Stiefel and S. F. Holley, Evaluation of tests and correlation of results for brittle cermets, J. Res. NBS, 61:149 (1958).Google Scholar
  27. 27.
    B. Roebuck, The tensile strength of hardmetals, J. Mat. Sci., 14:2837 (1979).CrossRefGoogle Scholar
  28. 28.
    E. A. Almond, R. S. Irani and B. Roebuck, A square indentation test for tool materials Mater. Sci. Eng. 44:173 (1980).CrossRefGoogle Scholar
  29. 29.
    E. A. Almond and B. Roebuck, Precracking of fracture toughness specimens of hardmetals by wedge indentation, Met. Technol., 5:92 (1978).Google Scholar
  30. 30.
    L. M. Barker, A simplified method for measuring plane strain fracture toughness, Eng. Fract. Mech., 9: 361 (1977).CrossRefGoogle Scholar
  31. 31.
    B. R. Lawn and E. R. Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mat. Sci., 10:2016 (1975).CrossRefGoogle Scholar
  32. 32.
    E. A. Almond and B. Roebuck, Some observations on indentation tests for hardmetals, in: “Conf. on Recent Advances in Hardmetal Production”, Loughborough U. of Tech. and Met. Powder Rep. (1979).Google Scholar
  33. 33.
    R. K. Viswanadham and J. D. Venables, A simple method for evaluating cemented carbides, Met. Trans., 8A:187 (1977).Google Scholar
  34. 34.
    E. A. Almond and B. Roebuck, Extending the use of indentation tests, in: “International Conf. on Science of Hard Materials”, to be published, Plenum, New York.Google Scholar
  35. 35.
    D. J. Rowcliffe and W. J. Warren, Structure and properties of TaC crystals. J. Mat. Sci. 5:345 (1970).CrossRefGoogle Scholar
  36. 36.
    J. L. Chermant, G. Leclerc and B. L. Mordike, Deformation of TiC at high temperatures. Z. Metallkde, 71:465 (1980).Google Scholar
  37. 37.
    G. E. Hollox, Microstructure and mechanical behaviour of carbides. Mater. Sci. Eng. 3:121 (1968).CrossRefGoogle Scholar
  38. 38.
    S. B. Luyckx, Slip system of tungsten carbide crystals at room temperature, Acta Met 18:233 (1970).CrossRefGoogle Scholar
  39. 39.
    S. Hagege, J. Vicens, G. Nouet and P. Delavignette, Analysis of structure defects in tungsten carbide. Phys. Stat. Sol., (a) 61:675 (1980).CrossRefGoogle Scholar
  40. 40.
    T. Johannesson and B. Lehtinen. The analysis of dislocation structures in WC by electron microscopy Phys. Stat. Sol. 16A:615 (1973).CrossRefGoogle Scholar
  41. 41.
    E. A. Almond and B. Roebuck. Ion beam thinning applied to electron microscopy of hardmetals Metall. Mater. Technol. 5:184 (1973).Google Scholar
  42. 42.
    V. K. Sarin and T. Johannesson, On the deformation of WC-Co cemented carbides, Met. Sci., 9:472 (1975).CrossRefGoogle Scholar
  43. 43.
    A. Hara, T. Nishikava and T. Nishimoto, Transmission electron microscopy of WC-Co alloys. J. Jap. Soc. Powder and Powder Met., 16:310 (1970).CrossRefGoogle Scholar
  44. 44.
    R. Arndt, The plasticity of WC-Co hardmetals, Z. Metallkd., 63:274 (1972).Google Scholar
  45. 45.
    R. J. Gottschall, W. S. Williams and I. D. Ward, Microstructural study of hot-deformed cemented carbides, Phil. Mag. 41A:1 (1980).Google Scholar
  46. 46.
    E. A. Almond and B. Roebuck. The origin of WC substructure and the effect of processing on the microstructure of WC-Co hardmetals in: “Proc. 10th Plansee Seminar” Vol 1, Metallwerk Plansee Austria 1981.Google Scholar
  47. 47.
    B. Roebuck and E. A. Almond. Micro structural events preceding fracture in compression in hardmetals in: “Conf. on Recent Advances in Hardmetal Production”, Loughborough U. of Tech. and Met. Powder Rep. (1979).Google Scholar
  48. 48.
    N. K. Sharma, I. D. Ward, H. L. Fraser and W. S. Williams, STEM analysis of grain boundaries in cemented carbides, J. Am. Ceram. Soc., 63:194 (1980).CrossRefGoogle Scholar
  49. 49.
    E. A. Almond and B. Roebuck. Unpublished work.Google Scholar
  50. 50.
    O. Rudiger and H. E. Exner, Application of basic research to the development of hardmetals, Powder Met. Int., 8:7 (1976).Google Scholar
  51. 51.
    R. K. Viswanadham. Carbide-binder interface ledges in (ViTi)C + (Ni, Mo) cermets Met. Trans., 10A:1631 (1979).Google Scholar
  52. 52.
    E. F. Drake and A. D. Krawitz, Fatigue damage in a WC-Ni cemented carbide composite, Met. Trans., 12A:505 (1981).Google Scholar
  53. 53.
    R. Greenwood, University of Birmingham, private communication.Google Scholar
  54. 54.
    M. J. Murray and D. C. Smith. Stress induced cavitation in Co bonded WC. J. Mater. Sci. 8:1706 (1973).CrossRefGoogle Scholar
  55. 55.
    F. Ueda, H. Doi, F. Fujiwara, H. Masatomi, and Y. Oosawa, Tensile creep of WC-10%Co and WC-10%TaC-10%Co alloys at elevated temperatures, Trans. Jap. Inst. Met. 16:591 (1975).Google Scholar
  56. 56.
    M. J. Murray, Fracture of WC-Co alloys: an example of spatially constrained crack tip opening displacement, Proc. Roy. Soc. 356A:483 (1977).Google Scholar
  57. 57.
    J. L. Chermant, A. Deschanvres and A. Lost, Fracture mechanics, statistical analysis and fractography of carbides and metal carbides composites, in: “Fracture Mechanics of Ceramics, Vol. 1”, Plenum, New York (1974)Google Scholar
  58. 58.
    R. K. Viswanadham and T. S. Sun, Determination of fracture modes in cemented carbides by Auger electron spectroscopy, Scripta Met., 13:767 (1979).CrossRefGoogle Scholar
  59. 59.
    R. K. Viswanadham, T. S. Sun, E. F. Drake and J. A. Peck, Quantitative fractography of WC-Co cermets by Auger Spectroscopy, J. Mater. Sci., 16: 1029 (1981).CrossRefGoogle Scholar
  60. 60.
    C. Lea and B. Roebuck, Fracture topography of WC-Co hard-metals, Met. Sci., 15:263 (1981).Google Scholar
  61. 61.
    E. A. Almond and B. Roebuck, Fatigue-crack growth in WC-Co hardmetals, Met. Technol., 7:83 (1980).Google Scholar
  62. 62.
    R. Fry, University of the Witwatersrand, private communication.Google Scholar
  63. 63.
    G. S. Kreimer, “Strength of Hard Alloys”, Consultants Bureau, Plenum, New York (1968).Google Scholar
  64. 63.
    P. Schwarzkopf and R. Kieffer, “Cemented Carbides”, Macmillan, New York, (1960).Google Scholar
  65. 65.
    H. E. Exner and J. Gurland, A review of parameters influencing some mechanical properties of tungsten carbide-cobalt alloys, Powder Metal. 13:13 (1970).Google Scholar
  66. 66.
    E. Lardner and N. B. McGregor, Determination of elastic constants and stress strain relationship to fracture of sintered WC-Co alloys, J. Inst. Met., 80:369 (1951).Google Scholar
  67. 67.
    H. C. Lee and J. Gurland, Hardness and deformation of cemented tungsten carbide, Mater. Sci. Eng., 33:125 (1978).CrossRefGoogle Scholar
  68. 68.
    J. Rogan and J. S. C. Parry, Fatigue strength of cemented tungsten carbides and tool steels subjected to cyclic compressive stresses, in: “6th AIRHPT. High Pressure Conf.“ Plenum, New York (1978).Google Scholar
  69. 69.
    I. Johansson, G. Persson and R. Hiltscher, Determination of static and fatigue strength of hardmetals, Powder Metall. Int., 2:119 (1970).Google Scholar
  70. 70.
    C. Nishimatsu and J. Gurland, Experimental survey of the deformation of the hard-ductile two-phase alloy system WC-Co, Trans. Am. Soc. Met., 52:469 (1960).Google Scholar
  71. 71.
    J. T. Smith and J. D. Wood, Elevated temperature compressive creep behaviour of WC-Co alloys, Acta Met., 16:1219 (1968).CrossRefGoogle Scholar
  72. 72.
    J. Gurland, The influence of basic design and processing variables on sintered WC-Co alloys, in: “Powder Metallurgy”, Interscience, New York (1961).Google Scholar
  73. 73.
    H. Suzuki, K. Hayashi, and H. Sakanoue, Mechanical properties of high strength WC-10%Co cemented carbides, Powder and Powder Metall, 16: 83 (1969).Google Scholar
  74. 74.
    H. Doi, F. Ueda, Y. Fujiwara and H. Masatomi, The effect of boundaries on strength and toughness of cemented carbides, in: “Grain Boundaries in Engineering Materials” Claitors, Baton Rouge, La. (1974).Google Scholar
  75. 75.
    R. C. Lueth, Determination of fracture toughness parameters for WC-Co alloys, in: “Fracture Mechanics of Ceramics, Vol 2” Plenum, New York (1974).Google Scholar
  76. 76.
    N. Ingelstrom and H. Nordberg, The fracture toughness of cemented tungsten carbides, Eng. Fract. Mech., 6:597 (1974).CrossRefGoogle Scholar
  77. 77.
    E. A. Almond and B. Roebuck, Precracking of fracture toughness specimens by wedge indentation, in: “Fracture Mechanics Methods for Ceramics”, ASTM STP 745, to be published.Google Scholar
  78. 78.
    J. R. Pickens and J. Gurland, The fracture toughness of WC-Co alloys in SENB specimens precracked by electrodischarge machining, Mater. Sci. Eng., 33:135 (1978).CrossRefGoogle Scholar
  79. 79.
    J. F. Knott, “Fundamentals of Fracture Mechanics” Butterworths, London (1973).Google Scholar
  80. 80.
    A. G. Evans and M. Linzer, High frequency cyclic crack propagation in ceramic materials, Int. J. Fract., 12:217 (1976).CrossRefGoogle Scholar
  81. 81.
    Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11:127 (1963).CrossRefGoogle Scholar
  82. 82.
    B. O. Jaensson and B. O. Sundström, Determination of Young’s modulus and Poisson’s ratio for WC-Co alloys by the finite element method, Mater Sci. Eng., 9:217 (1972)CrossRefGoogle Scholar
  83. 83.
    J. Gurland, A structural approach to the yield strength of two-phase alloys with coarse microstructures, Mater. Sci. and Eng., 40:59 (1979).CrossRefGoogle Scholar
  84. 84.
    B. O. Sundström, Elastic-plastic behaviour of WC-Co analysed by continnum mechanics, Mater. Sci. Eng., 12:265 (1973).CrossRefGoogle Scholar
  85. 85.
    J. L. Chermant and F. Osterstock, Elastic and plastic characteristics of WC-Co composite materials, Powder Metal. Int., 11:106 (1979).Google Scholar
  86. 86.
    H. Fischmeister and B. Karlsson, Plasticity of two-phase materials with a coarse microstructure, Z. Metallkd., 65:311 (1977).Google Scholar
  87. 87.
    E. A. Almond, M. G. Gee and B. Roebuck. Unpublished work.Google Scholar
  88. 88.
    L. Lindau, On the fracture toughness of WC-Co cemented carbides, in: “Proceedings of 4th International Conference on Fracture”, Univ. Waterloo Press (1977).Google Scholar
  89. 89.
    J. L. Chermant and F. Osterstock, Fracture toughness and fracture of WC-Co composites, J. Mater. Sci., 11:1939 (1976).CrossRefGoogle Scholar
  90. 90.
    M. Nakamura and J. Gurland, The fracture toughness of WC-Co two phase alloys — A preliminary model, Metal. Trans. 11A: 141 (1980).Google Scholar
  91. 91.
    E. M. Trent, Evaluation of tool materials for metal cutting, Eng. Digest. 38:15 (1977)Google Scholar
  92. 92.
    K. J. Stjernberg, Fracture toughness of TiC-coated cemented carbide Met. Sci. 14:89 (1980).CrossRefGoogle Scholar
  93. 93.
    J. Larssen-Basse, Wear of hardmetals in rock drilling: a survey of the literature, Powder Met., 16:1 (1973).Google Scholar
  94. 94.
    R. I. Blomberry, C. M. Perrot and P. M. Robinson, Abrasive wear of WC-Co composites. Wear mechanisms, Mater. Sci and Eng., 13:93 (1974).CrossRefGoogle Scholar
  95. 95.
    K. H. Zum Gahr and A. Fischer, Influence of microstructure of WC-Co hardmetals on strength and abrasive wear, Metall., 35:38 (1981).Google Scholar
  96. 96.
    J. Larssen-Basse, Some mechanisms of abrasive wear of cemented carbide composites, Mataux Corros. Ind., 54:8 (1980).Google Scholar
  97. 97.
    H. Jonsson, Wear of cemented carbide bits during percussive drilling in magnetite-rich ore, Planseeber. Pulvermet., 24:108 (1976).Google Scholar
  98. 98.
    E. Lardner, Cemented carbides for coal mining, Colliery Guardian, 919 (1977).Google Scholar
  99. 99.
    E. A. Almond, M. G. Gee and L. N. McCartney, The application of reliability technology to tool design, in: “Towards Improved Performance of Tool Materials”, to be published, Metals Society, London.Google Scholar
  100. 100.
    H. Doi and K. Nishigaki. Binder phase strengthening through precipitation of intermetallic compound in TiC base cement with high binder concentration, Mod. Dev. Powder Metal., 10:525 (1977).Google Scholar
  101. 101.
    R. K. Viswanadham, P. G. Lindquist and J. A. Peck, Preparation and properties of WC-(Ni, Al) cemented carbides, in: “International Conf. on Science of Hard Materials” to be published, Plenum, New York.Google Scholar
  102. 102.
    D. Moskowitz, Cemented TiC tool for intermittent cutting tool applications. U.S. Patent 4019874 (1977).Google Scholar
  103. 103.
    D. Moskowitz, Abrasion resistant Fe-Ni bonded WC, Mod. Dev. Powder Metal 10:543 (1977).Google Scholar
  104. 104.
    C. F. Yen, C. S. Yust and G. W. Clark, Enhancement of mechanical strength in hot-pressed TiB2 composites by addition of Fe and Ni, in: “New Developments and Applications in Composites”, Met. Soc. AIME (1979).Google Scholar
  105. 105.
    H. Suzuki, M. Sugiyama and T. Umeda, Aging mechanisms of sintered WC-Co hardmetals, J. Jap. Inst. Met., 29:467 (1965).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • E. A. Almond
    • 1
  1. 1.National Physical LaboratoryTeddington, MiddlesexUK

Personalised recommendations