Advertisement

Alteration of Surface Properties by Ion Implantation

  • C. J. McHargue
  • M. B. Lewis
  • B. R. Appleton
  • H. Naramoto
  • C. W. White
  • J. M. Williams

Abstract

Some exploratory experiments involving the bombardment of semiconductor materials by high-energy ions to alter the electrical properties of these materials were conducted in the 1950s. Since then, ion implantation has become a standard processing technique in the semiconductor industry to introduce dopants into a wide range of materials. During the 1970s interest in this technique was extended to modification of the chemical or mechanical properties of metals and the optical and electrical properties of insulators. Reference 1 contains a set of reviews covering studies outside of semiconductor technology. This paper describes studies to extend the use of ion implantation techniques to modify the mechanical properties of structural ceramics.

Keywords

Fracture Toughness Defect Production Union Carbide Corporation Apparent Fracture Toughness Relative Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. K. Rirvonen, ed., “Ion Implantation,” Vol. 18, Treatise on Materials Science and Technology, Academic Press, New York (1980).Google Scholar
  2. 2.
    I. Manning and G. P. Mueller, “Depth Distribution of Energy Deposition by Ion Bombardment,” Comp. Phys. Comm. 7:85 (1974).CrossRefGoogle Scholar
  3. 3.
    A. V. Drigo, S. L. Russo, P. Mazzoldi, P. D. Goode, and N.E.W. Hartley, “Lattice Disorder in Implanted Insulators: Pb Implantation in α-Al2O3,” Rad. Eff. 33:161 (1977).CrossRefGoogle Scholar
  4. 4.
    A. Camera, A. V. Drigo, and P. Mazzoldi, “Atom Location in Complex Lattices: Pb in α-Al2O3,” Rad. Eff. 49:29 (1980).CrossRefGoogle Scholar
  5. 5.
    G. W. Arnold, G. B. Krefft, and C. B. Norris, “Atomic Displacement and Ionization Effects on the Optical Absorption and Structural Properties of Ion-Implanted Al2O3,” Appl. Phys. Lett. 25:540 (1974).CrossRefGoogle Scholar
  6. 6.
    G. B. Krefft and E. P. EerNisse, “Volume Expansion and Annealing Compaction of Ion Bombarded Single Crystal Al2O3 and Polycrystalline Al2O3,” J. Appl. Phys. 49:2725 (1978).CrossRefGoogle Scholar
  7. 7.
    T. F. Luera, J. A. Borders, and G. W. Arnold, “Studies of Radiation Damage Produced by Ion Implantation in Sapphire,” in: Ion Implantation in Semiconductors—1976, F. Chernov, J. A. Borders, and D. K. Brice, eds., Plenum Press, New York (1976).Google Scholar
  8. 8.
    G. B. Krefft, W. Beezhold, and E. P. EerNisse, “Effect of Ionizing Radiation on Displacement Damage in Ion-Bombarded Single Crystal α-Al2O3 and α-SiO2,” IEEE Transactions on Nuclear Science, NS-22:2247 (1975).CrossRefGoogle Scholar
  9. 9.
    B. D. Evans, H. D. Hendricks, F. D. Bazzarre, and J. M. Bunch, “Association of the 6-eV Optical Band in Sapphire with Oxygen Vacancies,” Ion Implantation in Semiconductors—1976, F. Chernov, J. A. Borders, and D. K. Brice, eds., Plenum Press, New York (1976).Google Scholar
  10. 10.
    H. M. Naguib, J. F. Singleton, W. A. Grant, and G. Carter, “Lattice Disorder in Alumina Single Crystals Produced by Ion Bombardment,” J. Mat. Sci. 8:1633 (1973).CrossRefGoogle Scholar
  11. 11.
    E. P. EerNisse, “Sensitive Technique for Studying Ion-Implantation Damage,” Appl. Phys. Lett. 18-581 (1971).Google Scholar
  12. 12.
    R. R. Hart, H. L. Dunlap, and O. J. Marsh, “Disorder Produced in SiC by Ion Bombardment,” Rad. Eff. 9:261 (1971).CrossRefGoogle Scholar
  13. 13.
    V. V. Makarov, T. Tuomi, K. Naukkarinen, M. Luomajarri, and M. Riihonen, “Laser Induced Recrystallization and Defects in Ion Implanted Hexagonal SiC,” Appl. Phys. Lett. 35:922 (1979).CrossRefGoogle Scholar
  14. 14.
    R. B. Wright and D. M. Gruen, “Raman Scattering Study of Ion Bombardment Induced Amorphization of SiC,” Rad. Eff. 33:133 (1977).CrossRefGoogle Scholar
  15. 15.
    R. R. Hart, H. L. Dunlap, and O. J. Marsh, “Backscattering Analysis and Electrical Behavior of SiC Implanted with 40 keV In,” Ion Implantation in Semiconductors, I. Ruge and J. Graul, eds., Springer-Verlag, Berlin (1971).Google Scholar
  16. 16.
    A. B. Campbell, J. Schewchun, D. A. Thompson, J. A. Davies, and J. B. Mitchell, “N Implantation in SiC: Lattice Disorder and Foreign Atom Location Studies,” Ion Implantation in Semiconductors, Plenum Press, New York (1975).Google Scholar
  17. 17.
    R. H. Marion, “Use of Indentation Fracture to Determine Fracture Toughness,” Fracture Mechanics Applied to Brittle Materials, S. W. Freiman, ed., American Society for Testing and Materials, Philadelphia, PA (1979).Google Scholar
  18. 18.
    A. G. Evans, “Fracture Toughness: The Role of Indentation Techniques,” Fracture Mechanics Applied to Brittle Materials, S. W. Freiman, ed., American Society for Testing and Materials, Philadelphia, PA (1979).Google Scholar
  19. 19.
    A. B. vanGroenou, N. Maan, and J.D.B. Veldkamp, “Scratching Experiments in Various Ceramic Materials,” Philips Res. Rep. 30:320 (1975).Google Scholar
  20. 20.
    A. B. van Groenou and J.D.B. Veldkamp, “Grinding Brittle Materials,” Philips Tech. Rev. 38:105 (1978/79).Google Scholar
  21. 21.
    C. J. McHargue, B. R. Appleton, H. Naramoto, C. W. White, and J. M. Williams, “The Structure of Chromium-Implanted Al2O3,” Materials Research Society Annual Meeting, November 1981.Google Scholar
  22. 22.
    R. C. Bradt, “Cr2O3 Solid Solution Hardening of Al2O3,” J. Am. Cevom. Soc. 50:54 (1967).CrossRefGoogle Scholar
  23. 23.
    B. B. Ghate, W. C. Smith, C. H. Kim, D.P.H. Hasselman, and G. E. Kane, “Effect of Chromia Alloying on Machining Performance of Alumina Ceramic Cutting Tool,” Cevam. Bull. 54:210 (1975s).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • C. J. McHargue
    • 1
  • M. B. Lewis
    • 1
  • B. R. Appleton
    • 2
  • H. Naramoto
    • 2
  • C. W. White
    • 2
  • J. M. Williams
    • 2
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations