Phase Transformations in the Binder Phase of Co-W-C Cemented Carbides

  • G. Wirmark
  • G. L. Dunlop


The role of the binder phase in Co-W-C cemented carbides is discussed and the literature concerning possible phase transformations in the binder is briefly reviewed. Some recent observations made by analytical electron microscopy of precipitation reactions in simulated Co-W-C binder phase alloys are presented.


Ageing Temperature Precipitation Reaction Hard Metal Cement Carbide Binder Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.E. Exner, Physical and chemical nature of cemented carbides, Int. Met. Revs. 243:149 (1979).CrossRefGoogle Scholar
  2. 2.
    H. Jonsson and B. Aronsson, Microstructure and hardness of cobalt-rich Co-W-C alloys after ageing in the temperature range 400–1000°C, J. Inst. Met., 97:281 (1969).Google Scholar
  3. 3.
    Y. Naerheim, A metallurgical method for determining the temperature in cemented carbide tools, in: Proc. 5th European Symposium on Powder Metallurgy, Stockholm, 1978, 99.Google Scholar
  4. 4.
    B. Uhrenius and H. Harvig, A thermodynamic evaluation of carbide solubilities in the Fe-Mo-C, Fe-W-C, and Fe-Mo-W-C-systems at 1000°C, Met. Sci., 9:67 (1975).Google Scholar
  5. 5.
    M-L. Fiedler and H.H. Stadelmaier, The ternary system nickeltungsten-cobalt. Z. Metallkde., 66:402 (1975).Google Scholar
  6. 6.
    B. Uhrenius, B. Carlsson and T. Franzén, A study of the Co-W-C system at liquidus temperatures, Scand. J. Metall. 5:49 (1976).Google Scholar
  7. 7.
    H. Suzuki, T. Yamamoto and H. Sakanoue, Binder phase transformations in WC-Co cemented carbides, J. Jap. Inst. Met., 32:993 (1968).Google Scholar
  8. 8.
    V.K. Sarin and T. Johannesson, On the deformation of WC-Co cemented carbides, Met. Sci., 9:472 (1975).CrossRefGoogle Scholar
  9. 9.
    V.A. Tracey and N.R.V. Hall, Nickel matrices in cemented carbides, Powd. Met. Int. 12:132 (1980).Google Scholar
  10. 10.
    S.M. Brabyn, R. Cooper and C.T. Peters, Effects of the substitution of nickel for cobalt in WC based hardmetal, in: Proc. Plansee-Seminar, 1981. 2:675.Google Scholar
  11. 11.
    L. Prakash, Development of tungsten carbide hardmetals using iron-based binder alloys, PhD thesis, Institut für Materialund Festkörperforschung, Kernforschungszentrum, Karlsruhe KFK 2984 (1980).Google Scholar
  12. 12.
    S. Ekemar, L. Lindholm and T. Hartzell, Aspects of nickel as a binder metal in WC-based cemented carbides, in: Proc. 10th Plansee-Seminar, 1981. 1:477.Google Scholar
  13. 13.
    A. Giamei, J. Burman and E.J. Freise, The role of the allotropie transformation in cobalt-base alloys, (Part I), Cobalt, 39:88 (1968).Google Scholar
  14. 14.
    A.F. Giamei, J. Burma, S. Rabin, M. Cheng and E.J. Freise, The role of the allotropie transformation in cobalt-base alloys, (Part II), Cobalt, 40:140 (1968).Google Scholar
  15. 15.
    M. Hansen and K. Anderko, Constitution of binary alloys, McGraw-Hill, New York (1958).Google Scholar
  16. 16.
    A. Horsewell, B. Ralph and P.R. Howell, An intergranular mechanism for the fcc→hcp martensitic transformation, Phys. Stat. Sol. (a), 29:587 (1975).CrossRefGoogle Scholar
  17. 17.
    S. Mahajan, M.L. Green and D. Brasen, A model for the fcc→hcp transformation, its applications, and experimental evidence, Met. Trans. A, 8A:283 (1977).CrossRefGoogle Scholar
  18. 18.
    A. Hoffmann and R. Mohs, Gleichwichtsuntersuchingen im Kobaltreichen Teil des Systems Co-W-C bei 1250°C, Metall, 28:661 (1974).Google Scholar
  19. 19.
    H. Jonsson, Microstructure and hardness of heat-treated Co-W-C alloys with compositions close to those of binder phases of WC-Co cemented carbides, PhD thesis, University of Uppsala, 1980.Google Scholar
  20. 20.
    H. Suzuki and H. Kubota, The influence of binder phase composition on the properties of WC-Co cemented carbides, Planseeb. f. pulvermet., 14:96 (1966).Google Scholar
  21. 21.
    O. Rüdiger, D. Hirschfield, A. Hoffmann, J. Kolaska, G. Ostermann and J. Willbrand, Composition and properties of the binder metal in cobalt bonded tungsten carbide, Int. J. Powd. Metall. 7:29 (1971).Google Scholar
  22. 22.
    H. Suzuki, M. Sugiyama and T. Umeda, Effect of annealing on properties of sintered WC-Co alloys, Nippon Kinzoku Gakkai-Si, 28:287 (1964).Google Scholar
  23. 23.
    V.L. Tumanov, V.F. Funke, Z.S. Trukhanova, T.A. Novikova and K.F. Kuznetsova, Sov. Powd. Metall., 131 (1964).Google Scholar
  24. 24.
    ibid, Poroshk. Metall., 57 (1964).Google Scholar
  25. 25.
    A.A. Betser and J. Gurland, Some effects of temperature and heat treatment on the strength of sintered WC-Co alloys, Publ. 66-MD-17, ASME (1966).Google Scholar
  26. 26.
    T. Toda, Trans. Jap. Inst. Met., 6:139 (1965).Google Scholar
  27. 27.
    D.L. Tillwick and I. Joffe, Precipitation and magnetic hardening in sintered WC-Co composite materials, J. Phys. D: Appl. Phys. 6:1585 (1973).CrossRefGoogle Scholar
  28. 28.
    H. Jonsson, Studies of the binder phase in WC-Co cemented carbides heat-treated at 650°C, Powd. Metall., 15:1 (1972).Google Scholar
  29. 29.
    H. Jonsson, Studies of the binder phase in WC-Co cemented carbides heat-treated at 950°C, Planseeb. f. pulvermetall. 23:37 (1975).Google Scholar
  30. 30.
    B. Roebuck and E.A. Almond, A comparison of the deformation characteristics of Co and Ni alloys containing small amounts of W and C, in: Proc. 10th Plansee-Seminar 1981, 1:493.Google Scholar
  31. 31.
    H. Jonsson, Microstructure and hardness of Co-rich Co-W-C alloys with low carbon contents (0.02-0.05 wt.%). Scand. J. Metall. 5:81 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • G. Wirmark
    • 1
  • G. L. Dunlop
    • 1
  1. 1.Department of PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations