A Method for Quantification of Discontinuous Grain Growth and its Application to Cemented Carbides

  • K. M. Friederich
  • H. E. Exner


The discontinuous grain growth in tungsten carbide-cobalt alloys is investigated quantitatively. For this purpose a mathematical procedure was developed to separate the size distribution of continuously and discontinuously grown carbide crystals. It is assumed that the linear intercept distributions of both fractions can be described by two-parametric functions of the same type (e.g. logarithmic normal distribution). With this method variations in tendency for discontinuous growth of tungsten carbide powders can be characterized. The application is shown for cemented carbides with 12 wt-% Co produced from different WC-powders annealed at 1400 °C up to 25 h.


Tungsten Carbide Cumulative Frequency Hard Metal Cement Carbide Discontinuous Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Lardner, The control of grain size in the manufacture of sintered hard metal, Powder Metall. 13: 394 (1970).Google Scholar
  2. 2.
    H. Fischmeister and H.E. Exner, Gefügeabhängigkeit der Eigenschaften von Wolframkarbid-Kobalt-Hartlegierungen, Archiv Eisenhüttenwesen 37: 499 (1966).Google Scholar
  3. 3.
    H. E. Exner and J. Gurland, A review of parameters influencing some mechanical properties of tungsten carbide-cobalt alloys, Powder Metall. 13: 13 (1970).Google Scholar
  4. 4.
    H. E. Exner, A. Walter, P. Walter and G. Petzow, Auswirkungen der WC-Ausgangspulver auf gesinterte WC-Co-Hartmetalle, Metall 32: 443 (1978).Google Scholar
  5. 5.
    H. Tulhoff, On the grain growth of WC in cemented carbides, in: “Modern Developments in Powder Metallurgy (Proceedings 1980 International Powder Metallurgy Conference, Washington, DC)”, MPIF, New Jersey, in press.Google Scholar
  6. 6.
    H. F. Fischmeister, C.A. Blände and S. Palmqvist, A comparative study of methods for particle size analysis in the subsieve range, Powder Metall. 7: 82 (1961).Google Scholar
  7. 7.
    H. E. Exner, Struktur und Eigenschaften der Hartlegierung WC 10 % Co, PhD Thesis at Montanistische Hochschule Leoben, Austria (1964).Google Scholar
  8. 8.
    H. F. Fischmeister, H. E. Exner and G. Lindelöf, Particle size analysis in cemented carbide technology, in: “Modern Developments in Powder Metallurgy Vol 1”, H. H. Hauser, ed., Plenum Press Publ. Corp., New York (1966).Google Scholar
  9. 9.
    V. Howard, L. Scales and R. Lynch, The numerical densities of alpha and gamma motoneurons in the trigeminal motor nucleus of the rat: a method of determining the separate numerical densities of two mixed populations of anatomically similar cells, in: “Proceedings Fifth International Congress for Stereology”, Mikroskopie 37: 229 (1980).Google Scholar
  10. 10.
    L. Sachs, “Angewandte Statistik”, Springer Verlag, Berlin (1974).Google Scholar
  11. 11.
    K. Bosch, “Angewandte mathematische Statistik”, Rowohlt Taschenbuch Verlag, Reinbek/Hamburg (1976).Google Scholar
  12. 12.
    K. M. Friederich, Quantitative Erfassung der Vergröberungsneigung von Wolframkarbidkristallen in Hartlegierungen, PhD Thesis at Universität Stuttgart, Germany (1981).Google Scholar
  13. 13.
    W. Peter, E. Kohlhaas and A. Fischer, Präparationsmethoden für elektronenmikroskopische Gefügeaufnahmen von Hartmetallen, Prakt. Metallogr. 5: 115 (1968).Google Scholar
  14. 14.
    H. Grewe, H. E. Exner and P. Walter, Behinderung des Kornwachstums in Hartmetall-Legierungen vom ISO-K10-Typ durch Zusatzkarbide, Z. Metallkd. 64: 85 (1973).Google Scholar
  15. 15.
    J. L. Chermant, M. Coster, A. Deschanvres and A. Iost, Etude de la cinétique de croissance de système carbure-métal, J. Less-Common Met. 52: 177 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • K. M. Friederich
    • 1
  • H. E. Exner
    • 1
  1. 1.Institut für WerkstoffwissenschaftenMax-Planck-Institut für MetallforschungStuttgartFR Germany

Personalised recommendations