Qualitative and Quantitative Interpretation of Microstructures in Cemented Carbides

  • Hans Eckart Exner


Cemented carbides (or hardmetals) can be conveniently defined in terms of microstructure: They consist of single crystals of one or more carbide phases which form a continuous skeleton the free space of which is filled by a continuous metal binder. Due to their exceptional technical performance in cutting and wear applications, the microstructure of these composite materials has been subject to extensive scientific investigations. Cemented carbides have also been model systems for studying the densification and the development of microstructures during liquid phase sintering (see, for example1–5) as well as for finding experimental relationships between microstructure and properties of two-phase alloys (see, for example,6–10).


Tungsten Carbide Carbide Phase Cement Carbide Binder Phase Carbide Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.D. Kingery, E. Niki and M.D. Narasimhan, Sintering of Oxide and Carbide-Metal Compositions in Presence of a Liquid Phase, J. Amer. Cer. Soc. 44: 29 (1961).CrossRefGoogle Scholar
  2. 2.
    T.J. Whalen and M. Humenik, Mechanisms and Microstructural Aspects of Liquid Phase Sintering, Progr. Powder Met. 18: 85 (1963).Google Scholar
  3. 3.
    H.E. Exner, Ostwald-Reifung von Übergangsmetallkarbiden in flüssigem Nickel und Kobalt, Z. Metallkde. 64:273 (1973).Google Scholar
  4. 4.
    W.J. Huppmann and G. Petzow, Particle Rearrangement during Liquid Phase Sintering of Several Carbide-Metal Combinations, in: “Modern Developments in Powder Metallurgy,” Vol. 9, p. 77, Metal Powder Industries Federation, Princeton (1977).Google Scholar
  5. 5.
    M. Coster, Etude du Paramétre de Voisinage, Metallography 9:415 (1976).CrossRefGoogle Scholar
  6. 6.
    H.E. Exner and J. Gurland, A Review of Parameters Influencing some Mechanical Properties of Tungsten Carbide Cobalt Alloys, Powder Met. 13: 13 (1970).Google Scholar
  7. 7.
    B.O. Sundström, Elastic-Plastic Behaviour of WC-Co Analysed by Continuum Mechanics, Mat. Sci. Eng. 12: 265 (1973).CrossRefGoogle Scholar
  8. 8.
    B. Paul, Prediction of Elastic Constants of Multiphase Materials, Trans. Met. Soc. AIME 218: 36 (1960)Google Scholar
  9. 9.
    J. Gurland, “Some Aspects of the Fracture of Metallic Composites,” in: Fundamental Phenomena in the Materials Sciences, Vol. 4, p. 177, Plenum Press, New York (1967)Google Scholar
  10. 10.
    H.C. Lee and J. Gurland, Hardness and Deformation of Cemented Tungsten Carbides, Mat. Sci. Eng. 33: 125 (1978).CrossRefGoogle Scholar
  11. 11.
    H.E. Exner, Physical and Chemical Nature of Cemented Carbides, Intern. Met. Rev. 24: 149 (1979).CrossRefGoogle Scholar
  12. 12.
    G.A. Wood, Quality Control in the Hardmetal Industry, Powder Met. 13: 338 (1970).Google Scholar
  13. 13.
    E. Lardner and G.A. Wood, Quality Control and Testing Methods for Hardmetals, in: Recent Advances in Hardmetal Production, Vol. 1, Paper 30, Loughborough University and Technology an Metal Powder Report (1979).Google Scholar
  14. 14.
    A. Op Het Veld and P. Borgers, A Preparation Method for Revealing the Structure of Hard Metals, Pract. Metallogr. 4: 235 (1967).Google Scholar
  15. 15.
    W. Peter, E. Kohlhaas and O. Jung, Revealing of Hard Metal Structures by Interference Vapour Deposition, Pract. Metallogr. 4: 284 and 605 (1967).Google Scholar
  16. 16.
    H. Grewe, Structural Investigations on Hard Metals, Pract. Metallogr. 6: 411 (1969).Google Scholar
  17. 17.
    R. Arndt and E. Hillnhagen, Special Techniques for the Metallographic Examination of Hard Metals, Pract. Metallogr. 9: 309 (1972).Google Scholar
  18. 18.
    W.U. Kopp and O. Linke, Preparation and Structure of Sintered Carbides, Pract. Metallogr. 16: 257 (1979).Google Scholar
  19. 19.
    W. Mader, G. Grassmück, J. Blaha and P. Warbichler, Identifizierung von Poren und Inhomogenitäten im Gefüge von Sinterhartmetallen, Pract. Metallogr., Special Issue 10: 155 (1979).Google Scholar
  20. 20.
    J. Hinnüber, O. Rüdiger and W. Kinna, An Electron-Microscope and X-Ray Investigation of the Milling of Tungsten Carbide/Cobalt Mixtures, Powder Met. 8: 1 (1961).CrossRefGoogle Scholar
  21. 21.
    J. Drott, “The Observation of an Intermediate Layer in WC-Co Alloys,” in: Proc. 3rd European Reg. Conf. Electron Microscopy, p. 159, Publishing House of Czechoslovak Academy of Sciences, Prague (1964).Google Scholar
  22. 22.
    H.E. Exner and H.F. Fischmeister, Gefügeausbildung von gesinterten Wolframkarbid-Kobalt-Legierungen, Archiv Eisenhüttenwesen 37: 417 (1966).Google Scholar
  23. 23.
    H.E. Exner and H.F. Fischmeister, Die Anwendung der Linearanalyse zur quantitativen Gefügebeschreibung von Hartmetallen, Prakt. Metallogr. 3: 18 (1966).Google Scholar
  24. 24.
    B. Lehtinen, Increasing the Three-Dimensional Impression of Replicas, Pract. Metallogr. 6: 500 (1969).Google Scholar
  25. 25.
    E. Hillnhagen and J. Willbrand, Stereometric Electron Metallography on WC-Co Alloys, Pract. Metallogr. 6: 135 (1969).Google Scholar
  26. 26.
    A. Hara, T. Nishikawa and S. Yazu, The Observation of the Fracture Path in WC-Co Cemented Carbide Using a Newly Developed Replica Method with Electron Microscope, Planseeber. Pulvermet. 18: 28 (1970).Google Scholar
  27. 27.
    B.O. Jaensson, Deformation Phenomena of High Strength WC-Co Alloys Studied by Means of a New Electron Microscope Replica Locating Technique, Pract. Metallogr. 9: 624 (1972).Google Scholar
  28. 28.
    W. Mader, Über die Anwendung der Elektronenmikroskopie zur Untersuchung von Hartmetallen, Radex-Rundschau: 247 (1956)Google Scholar
  29. 29.
    K. Hayashi, H. Suzuki and I. Kawakatsu, Observations on Surface Cracks and Fracture Surfaces of Cemented Carbides, J. Japan Inst. Met. 32: 993 (1968).Google Scholar
  30. 30.
    E. Kohlhaas, D. Jung and A. Fischer, Electron Microscope Studies of Fracture Surfaces in Hard Metals, Pract. Metallogr. 9: 243 (1972).Google Scholar
  31. 31.
    M. Coster, Application des méthodes quantitatives et stéréo-logiques à l’etude de la croissance et des charactéristiques méchaniques d’échantillons polyphasés: cas des matériaux carburés de tungstène-cobalt. Ph. D. Thesis, University of Caen (1974).Google Scholar
  32. 32.
    A.N. Pilyankevich, V.N. Paderno, V.N. Klimenko and V.A. Maslyuk, An Electron Microscopical Study of Hard Alloys Based on Chromium Oxide, Soviet Powder Met. Met. Ceram. 552 (1977).Google Scholar
  33. 33.
    S. Bartolucci and H. H. Schlossin, Plastic Deformation Preceeding Fracture in WC-Co Alloys, Acta Met. 14: 377 (1966).CrossRefGoogle Scholar
  34. 34.
    G. Persson, Thin Foils of WC-Co Hard Metals, Nature 218: 159 (1968).CrossRefGoogle Scholar
  35. 35.
    B. Lehtinen, The Thinning of Tungsten Carbide-Cobalt Hard Metals to Electron Transparency by Electropolishing, J. Sci. Inst. (J. Phys. E.) 1: 673 (1968).CrossRefGoogle Scholar
  36. 36.
    A. Hara, T. Nishikawa and T. Nishimoto, Transmission Electron Microscopy of WC-Co Cemented Carbides, J. Japan Soc. Powders and Powder Met. 16: 310 (1970).CrossRefGoogle Scholar
  37. 37.
    T. Johannesson and B. Lehtinen, The Analysis of Dislocation Structure in Tungsten Carbide by Electron Microscopy, Phil. Mag. 24: 1079 (1971).CrossRefGoogle Scholar
  38. 38.
    R. Arndt, Plastizität von Hartmetallen auf WC-Co Basis, Z. Metallkde. 63: 274 (1972).Google Scholar
  39. 39.
    H. Johnsson, Studies of the Binder Phase in WC-Co Cemented Carbides Heat Treated at 650 °C, Powder Met. 15: 29 (1972).Google Scholar
  40. 40.
    H. Johnsson, Composition and Microstructure of Binder Phase of Slowly Cooled WC-Co Cemented Carbides, Planseeber. Pulvermet. 21: 187 (1973).Google Scholar
  41. 41.
    H. Le Roux, Microstructure of Reversibly Crystallising Turbostratic Graphite in Heat-Treated WC-Co Hard Metals, Acta Met. 24: 299 (1976).CrossRefGoogle Scholar
  42. 42.
    V.K. Sarin and T. Johannesson, On the Deformation of WC-Co Cemented Carbides, Metals Science 9: 472 (1975).CrossRefGoogle Scholar
  43. 43.
    O. Rüdiger and H.E. Exner, Application of Basic Research to the Development of Hard Metals, Powder Met. Intern. 8: 7 (1976).Google Scholar
  44. 44.
    H. Gahm, S. Karagöz and G. Kompek, Metallographic Methods for the Characterization of the Microstructure of Cemented Carbides, Pract. Metallogr. 18: 14 (1981).Google Scholar
  45. 45.
    H.F. Fischmeister, Review on Discussions of the Colloquium on Cemented Carbides in Ehrendal, Jernkont. Ann. 147: 200 (1963).Google Scholar
  46. 46.
    W. Peter, O. Jung and E. Kohlhaas, Kobalt in den Karbiden von Hartmetallen, in: Preprints 2nd European Powder Metallurgy Symposium, Vol. 2, Paper 7.4, Stuttgart (1968).Google Scholar
  47. 47.
    W. Peter, E. Kohlhaas and O. Jung, Über die inhomogene Zusammensetzung von Wolframkabid und von Mischkarbiden WC-TiC und WC-TiC-TaC in Hartmetallen, in.: Preprints 2nd European Powder Metallurgy Symposium, Vol. 2, Paper 7.6, Stuttgart (1968).Google Scholar
  48. 48.
    W. Mader and K.F. Müller, Identifizierung der in technischen Hartmetallen auftretenden Phasen mit Hilfe der Mikrosonde, Planseeber. Pulvermet. 16: 39 (1968).Google Scholar
  49. 49.
    W. May, Zum Reaktionsverhalten übersättigter (Wolfram, Titan, Tantal)-Karbide in flüssigem Wolfram, Techn. Mitt. Krupp 30: 15 (1972)Google Scholar
  50. 50.
    U. Bäckmann and B. Lehtinen, Quantitative X-Ray Analysis of Tungsten Carbide-Cobalt Cemented Carbides in the Scanning Electron Microscope, J. Sci. Inst. (J. Phys. E.) 4: 955 (1971).CrossRefGoogle Scholar
  51. 51.
    S. Bartolucci-Luyckx, Role of Inclusions in the Fracture Initiation Process in WC-Co Alloys, Acta Met. 23: 109 (1975).CrossRefGoogle Scholar
  52. 52.
    H. Suzuki, K. Hayashi and T. Yamamoto, The Influence of Anomalous Phases on the Strength of Titanium Base Cermets, Planseeber. Pulvermet. 26: 92 (1978).Google Scholar
  53. 53.
    A. Henjered, M. Hellsing, H. Nordén and H.O. Andrén, Atom-Probe and STEM X-Ray Microanalysis of WC-Co Cemented Carbides, This conference (1981).Google Scholar
  54. 54.
    D.T. Quinto, M.N. Haller and G.J. Wolfe, Low-Z Element Analysis in Hard Materials, This conference (1981).Google Scholar
  55. 55.
    A. Krawitz, E. Drake, R. DeGroot, C. Vasel and W. Yelon, Neutron Diffraction of Cemented Carbide Composites, This conference (1981).Google Scholar
  56. 56.
    C.S. Yust and P.S. Sklad, Characterization of TiB-Ni Cermets by Transmission and Analytical Electron Microscopy, This conference (1981).Google Scholar
  57. 57.
    N.K. Sharma and W.S. Williams, Microchemical Analysis of Grain Boundaries in Cemented Carbides, J. Amer. Cer. Soc. 58: 1031 (1979).Google Scholar
  58. 58.
    C. Lea and B. Roebuck, Fracture Topography of WC-Co Hard-metals, Metals Science 15: 262 (1981).Google Scholar
  59. 59.
    R.K. Viswanadham, T.S. Sun, E.F. Drake and J.A. Peck, Quantitative Fractography of WC-Co Cermets by Auger Spectroscopy, J. Mat. Sci. 16: 1029 (1981).CrossRefGoogle Scholar
  60. 60.
    J. Gurland and P. Bardzil, Relation of Strength, Composition and Grain Size of Sintered WC-Co Alloys, Trans. AIME 203: 311 (1955).Google Scholar
  61. 61.
    J. Gurland, The Fracture Strength of Sintered Tungsten Carbide-Cobalt Alloys in Relation to Composition and Particle Spacing, Trans. AIME 227: 1146 (1963).Google Scholar
  62. 62.
    J. Gurland, Current View on the Structure and Properties of Cemented Carbides, Jernkont. Ann. 147: 4 (1963).Google Scholar
  63. 63.
    K.G. Stjernberg, Some Relationships between the Structure and the Properties of WC-TiC-Co Alloys, Powder Met. 15:1 (1970).Google Scholar
  64. 64.
    H.E. Exner, E. Santa Marta, and G. Petzow, “Grain Growth in Liquid-Phase Sintering of Carbides,” in: Modern Developments in Powder Metallurgy, Vol. 4, p. 315, Plenum Press, New York (1971).Google Scholar
  65. 65.
    R. Warren, Microstructural Development During the Liquid Phase Sintering of VC-Co Alloys, J. Mat. Sci. 7: 1434 (1972).CrossRefGoogle Scholar
  66. 66.
    G. Grathwohl and R. Warren, The Effect of Cobalt Content on the Microstructure of Liquid-Phase Sintered TaC-Co Alloys, Mat. Sci, Eng. 14: 55 (1975).CrossRefGoogle Scholar
  67. 67.
    L. Lindau and K.G. Stjernberg, Grain Growth in TiC-Ni-Mo and TiC-Ni-W Cemented Carbides, Powder Met. 19: 210 (1976).Google Scholar
  68. 68.
    J.L. Chermant and M. Coster, Quantitative Analysis of Parcticle Growth in TiC-Ni Alloys, J. Microscopy 109: 269 (1977).CrossRefGoogle Scholar
  69. 69.
    H.F. Fischmeister, Geräte und Verfahren der quantitativen Metallographie, Prakt. Metallogr. 2: 251 (1965).Google Scholar
  70. 70.
    H.F. Fischmeister, Characterization of Porous Structure by Stereological Measurements, Powder Met. Intern. 7: 178 (1975).Google Scholar
  71. 71.
    H.E. Exner, Methods and Significance of Particle-and Grain-Size Control in Cemented Carbide Technology, Powder Met. 13: 429 (1970).Google Scholar
  72. 72.
    H.E. Exner and H.P. Hougardy, Einführung in die quantitative Gefügeanalyse (Introduction to Quantitative Analysis of Microstructures), Monography edited by Deutsche Gesellschaft für Metallkunde, Oberursel (1982), in print.Google Scholar
  73. 73.
    T. Werlefors and C. Eskilsson, On-Line Computer Analysis of WC-Co Structures Imaged in a SEM, Metallography 12: 153 (1979).CrossRefGoogle Scholar
  74. 74.
    H.E. Exner and H.L. Lukas, The Experimental Verification of the Stationary Wagner-Lifshitz Distribution of Coarse Particles, Metallography 4: 325 (1971).CrossRefGoogle Scholar
  75. 75.
    C.A. Stickels and E.E. Hucke, Measurements of Dihedral Angles, Trans. Met. Soc. AIME 230: 795 (1964).Google Scholar
  76. 76.
    E.J. Sandford and E.M. Trent, “The Physical Metallurgy of Sintered Carbides,” in: Spec. Rep. No 38, p. 84, Iron and Steel Institute, London (1947).Google Scholar
  77. 77.
    J. Willbrand and U. Wieland, The Size of Coherent Domains in the Binder Metal of Cobalt-Bonded Tungsten Carbide, Intern. J. Powder Met. 8(2): 89 (1972).Google Scholar
  78. 78.
    R.K. Viswanadham, Binder Grain Size in Cemented Carbides, Metallography 12: 333 (1979).CrossRefGoogle Scholar
  79. 79.
    H. Suzuki, K. Hayashi and Y. Taniguchi, Effects of Domain Size of Binder Phase on High Temperature Strength of WC-Co Cemented Carbides, Planseeber. Pulvermet. 27: 215 (1979).Google Scholar
  80. 80.
    H. Le Roux, “The Martensitic Transformation and the Transverse Rupture Stength of Heat Treated WC 25 wt% Co Hard-Metals,” in: Proceed. 10th Plansee Seminar, Vol. 1, p. 529 Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  81. 81.
    E.A. Almond and B. Roebuck, The Origin of WC Substructure and the Effect of Processing on the Microstructure of WC-Co Hardmetals, in: Proceed. 10th Plansee Seminar, Vol. 1, p. 659, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  82. 82.
    H.F. Fischmeister and H.E. Exner, Gefügeabhängigkeit der Eigenschaften von Wolframkarbid-Kobalt-Hartlegierungen, Archiv Eisenhüttenwesen 37: 499 (1966).Google Scholar
  83. 83.
    K.H. Zum Gahr and A. Fischer, Einfluß des Gefüges von WC-Co Hartmetallen auf die Bruchzähigkeit und den Abrasivverschleiß, Metall 35: 38 (1981).Google Scholar
  84. 84.
    J. Freytag, Auswirkung von Zusätzen auf die Bindephase einer WC-12 Gew. % Co Hartlegierung, Ph. D. Thesis, Universität Stuttgart (1977).Google Scholar
  85. 85.
    H.E. Exner, J. Freytag, G. Petzow and P. Walter, Sinterverlauf eines WC-12 Gew.% Co Hartmetalls mit unterschiedlicher Bindephasenzusammensetzung, Planseeber. Pulvermet. 26: 90 (1978).Google Scholar
  86. 86.
    H.F. Fischmeister and H.E. Exner, Beobachtungen über den Mahlvorgang bei Hartmetallpulvern, Planseeber. Pulvermet. 13: 178 (1965).Google Scholar
  87. 87.
    D.G. Evans, “The Relationships between Structure and Performance of Cemented Carbide Tools,” in: Proceed. Recent Advances in Hardmetal Production, Vol. 2, Paper 39, Metal Powder Report, London (1979).Google Scholar
  88. 88.
    H. Suzuki, T. Yamamoto and H. Sakanoue, Binder Phase Transformation in WC-Co Cemented Carbides, J. Japan Inst. Metals 32: 993 (1968).Google Scholar
  89. 89.
    A.F. Giamei, J. Burma, S. Rabin, M. Cheng and E.J. Freise, The Role of Allotropic Transformation for Cobalt Alloys, Cobalt 40: 140 (1968).Google Scholar
  90. 90.
    S.M. Brabyn, R. Cooper and C.T. Peters, “Effects of Substitution of Nickel for Cobalt in WC Based Hardmetal,” in: Proceed. 10th Plansee Seminar, Vol. 2, p. 675, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  91. 91.
    B. Roebuck and E.A. Almond, A Comparison of the Deformation Characteristics of Co and Ni Alloys Containing Small Amounts of W and C, in: Proceed. 10th Plansee Seminar, Vol. 1. p. 493, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  92. 92.
    D. Moscowitz, M.J. Ford and M. Humenik, High Strength Tungsten Carbides, Intern. J. Powder Met. 6(1): 55 (1970).Google Scholar
  93. 93.
    L. Prakash, Weiterentwicklung von Wolframkarbid-Hartmetallen unter Verwendung von Eisen-Basis-Bindelegierungen, Ph. D. Thesis, Universität Karlsruhe, Kernforschungszentrum Karlsruhe, Report KfK 2984 (1981).Google Scholar
  94. 94.
    L. Prakash, H. Holleck, F. Thummler and P. Walter, “The Influence of Binder Composition on the Properties of WC-FE/Co/Ni Cemented Carbides,” in: Modern Developments in Powder Metallurgy, Vol. 14, p. 255, Metal Powder Industry Federation, Princeton (1981).Google Scholar
  95. 95.
    F. Thummler, H. Holleck and L. Prakash, “Ergebnisse zur Weiterentwicklung von Hartstoffen und Hartmetallen,” in: Proceed. 10th Plansee Seminar, Vol. 1, p. 459, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  96. 96.
    H. Johnsson and B. Aaronson, Microstructure and Hardness of Cobalt-Rich Co-W-C Alloys after Ageing in the Temperature Range 400–1000 °C, J. Inst. Metals 97: 281 (1969).Google Scholar
  97. 97.
    O. Rudiger, Compostion and Properties of WC-Co Alloys, Int. J. Powder. Met. 7: 29 (1971).Google Scholar
  98. 98.
    D.L. Tillwick and I. Joffe, Magnetic Properties of Co-W Alloys in Relation to Sintered WC-Co Compacts, Scripta Met. 5: 479 (1973)CrossRefGoogle Scholar
  99. 99.
    A. Hoffmann and R. Mohs, Gleichgewichtsuntersuchungen im kobaltreichen Teil des Systems Co-W-C bei 1250 °C, Metall 28: 661 (1974).Google Scholar
  100. 100.
    H. Grewe and J. Kolasha, “Gezeite Einstellung von Lösungszustanden in der Bindephase technischer Hartmetalle und Folgerungen daraus,” Metal 35 (563 (1981), and in: Proceed. 10th Plansee Seminar, Vol. 1, p. 509, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  101. 101.
    G. Wirmark and G.L. Dunlop, Phase Transformation in the Binder Phase of Co-W-C Cemented Carbides, This conference (1981).Google Scholar
  102. 102.
    O. Rüdiger and A. Hoffmann, Reine Kobaltlegierungen mit Zusätzen von Kohlenstoff, Wolfram und Titan, Metall 24: 723 (1970).Google Scholar
  103. 103.
    W.D. Schubert, P. Ettmayer, B. Luxana, W. Ohlsson, “Phasengleichgewichte in den Systemen Co-Mo-W-C und Ni-Mo-W-C,” in: Proceed. 10th Plansee Seminar, Vol. 2. p. 871, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  104. 104.
    R.K. Viswanadham, P. Lindquist and J.A. Peck, Preparation and Properties of WC-(Ni, Al) Cemented Carbides, This conference (1981).Google Scholar
  105. 105.
    D. Moskowitz and M. Humenik, “Cemented TiC Base Tools with Improved Deformation Resistance,” in: Modern Developments in Powder Metallurgy, Vol. 14, p. 307, Metal Powder Industry Federation, Princeton (1981).Google Scholar
  106. 106.
    H. Holleck, and H. Kleykamp, “The Constitution of Cemented Carbide Systems,” in: Modern Developments in Powder Metallurgy, Vol. 14, p. 234, Metal Powder Industry-Federation, Princeton (1981).Google Scholar
  107. 107.
    P.O. Snell, The Effect of Carbon Content and Sintering Temperature on Structure Formation and Properties of a TiC-24% Mo-15% Ni Alloy, Planseeber. Pulvermet. 22: 91 (1974).Google Scholar
  108. 108.
    A. Taylor and R.W. Floyd, The Constitution of Nickel-Rich Alloys of the Nickel-Titanium-Aluminum System, J. Inst. Metals 81: 25 (1952/3).Google Scholar
  109. 109.
    H. Doi and K. Nishigaki, “Binder Phase Strengthening through Precipitation of Intermetallic Compound in Titanium Carbide Base Cermet with High Binder Concentration,” in: Modern Developments in Powder Metallurgy, Vol.10, p. 525 Metal Powder Industries Federation, Princeton (1977).Google Scholar
  110. 110.
    H. Tulhoff, “On the Grain Growth of Tungsten Carbide in Cemented Carbides,” in: Modern Development in Powder Metallurgy, Vol. 14, p. 247, Metal Powder Industries Federation, Princeton (1981).Google Scholar
  111. 111.
    M. Schreiner, E. Alizadeh, T. Schmitt, E. Lassner and B. Lux, “Einfluß geringer Konzentrationen von Fremdelementen auf die WC-Co-Hartmetallsinterung und die Produktionseigenschaften,” in: Proceed. 10th Plansee Seminar, Vol. 2, p. 811, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  112. 112.
    H. Grewe, H.E. Exner and P. Walter, Behinderung des Kornwachstums in Hartmetall-Legierungen vom ISO-K 10-Typ durch Zusatzkarbide, Z. Metallkde. 64: 85 (1973).Google Scholar
  113. 113.
    G.J. Rees and B. Young, A Study of the Factors Controlling Grain Size in Sintered Hard-Metal, Powder Met. 14: 1 (1971).Google Scholar
  114. 114.
    K.M. Friederich, H.E. Exner and H. Tulhoff, “Quantitative Erfassung des diskontinuierlichen Kornwachstums in WC-Co-Hartligierungen,” Proceed. 10th Plansee Seminar, Vol. 2, p. 795, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  115. 115.
    K.M. Friederich, Quantitative Erfassung der Vergröberungsneigung von Wolframkarbidkristallen in Hartlegierungen, Ph. D. Thesis, Universität Stuttgart (1981).Google Scholar
  116. 116.
    H. Tulhoff, Discussion of K.M. Friederich and H.E. Exner, Quantification of Continuous and Discontinuous Growth in Cemented Cabides, This conference (1981).Google Scholar
  117. 117.
    J. Gurland, A Study of the Effect of Carbon Content on the Structure and Properties of Sintered WC-Co Alloys, Trans. AIME 200: 285 (1954).Google Scholar
  118. 118.
    H.E. Exner, A. Walter, P. Walter and G. Petzow, Auswirkung der Wolframkarbid-Ausgangspulver auf gesinterte Wolframkarbid-Hartmetalle, Metall 32: 443 (1978).Google Scholar
  119. 119.
    M.B. Waldron, Stand und Forschung auf dem Gebiet der Hartmetalle, Neue Hütte 23: 317 (1978).Google Scholar
  120. 120.
    W. May, Phase Decomposition and Grain Growth in (W, Ti)C-Co Alloys, J. Mat. Sci. 6: 1209 (1971).CrossRefGoogle Scholar
  121. 121.
    R. Warren and M.B. Waldron, Microstructural Development during the Liquid-Phase Sintering of Cemented Carbides, Powder Met. 15: 166 (1972).Google Scholar
  122. 122.
    R. Warren, Effects of Carbide Composition on the Microstructure of Cemented Binary Carbides, Planseeber. Pulvermet. 20: 299 (1972).Google Scholar
  123. 123.
    H. Suzuki and T. Yamamoto, Spotted Structures in Cemented Carbides Containing Small Amounts of Tantalum and Niobium Carbide, J. Japan Soc. Powd. Met. 16: 235 (1969).CrossRefGoogle Scholar
  124. 124.
    S. Bartolucci-Luyckx, “Some Features of the Eta Phase in Substoichiometric WC-Co Alloys,” in: Proceed. 10th Plansee Seminar, Vol. 1, p. 629, Metallwerk Plansee, Reutte, Austria (1981).Google Scholar
  125. 125.
    C.T. Peters and R. Cooper, Effects of Eta Phase Precipitation on the Structure and Mechanical Properties of WC-5% Hardmetals, Planseeber. Pulvermet. 26: 181 (1978).Google Scholar
  126. 126.
    W. May and E. Krämer, Volumendiffusion und ihr Einfluß auf die Mischkristallbildung, Planseeber. Pulvermet. 22: 107 (1974).Google Scholar
  127. 127.
    E. Rudy, S. Worchester and W. Elkington, Modified Spinodal Alloys for Tool and Wear Applications, High Temperatures-High Pressures 6: 497 (1974).Google Scholar
  128. 128.
    H. Holleck, Constitutional Aspects in the Development of New Hard Materials, This conference (1981).Google Scholar
  129. 129.
    C. Lea and B. Roebuck, Fracture Topography of WC-Co Hardmetals, Metals Science 15: 262 (1981).Google Scholar
  130. 130.
    S. Hagége, Structure and Importance of Interfaces in WC-Co Composites, Lecture at Max-Planck-Institut Stuttgart (1981), to be publishedGoogle Scholar
  131. 131.
    J. Gurland, Observations on the Structure and Sintering Mechanism of Cemented Carbides, Trans. Met. Soc. AIME 215: 601 (1959).Google Scholar
  132. 132.
    S. Bartolucci-Luyckx, “Contiguity and Fracture Process of WC-Co Alloys,” in: Proceed. 5th International Conference on Fracture, Cannes (1981), to be published.Google Scholar
  133. 133.
    J. Gurland, A Structural Approach to the Yield Strength of Two-Phase Alloys with Coarse Microstructures, Mat. Sci. Engineering 40: 59 (1979).CrossRefGoogle Scholar
  134. 134.
    P.B. Anderson, Hartmetalle erhöhter Zähigkeit, Planseeber. Pulvermet. 15: 180 (1967)Google Scholar
  135. 135.
    N.I. Romanova, G.S. Kreimer and V.l. Tumanov, Effect of Residual Porosity on the Fatigue Life of Tungsten-Carbide Cobalt Alloys Subjected to Cyclic Cantilever Bending, Soviet Powder Met. Met. Ceram.: 737 (1979).Google Scholar
  136. 136.
    E. Lardner and D.J. Bettle, Isostatic Hot Pressing of Cemented Carbides, Metals and Materials 7: 540 (1973).Google Scholar
  137. 137.
    S. Amberg and H. Doxner, Porosity in Cemented Carbide, Powder Met. 20: 1 (1977).Google Scholar
  138. 138.
    H. Suzuki and K. Hayashi, Strength of WC-Co Cemented Carbides in Relation to their Fracture Sorces, Planseeber. Pulvermet. 23: 24 (1975).Google Scholar
  139. 139.
    H. Suzuki, K. Hayashi and T. Yamamoto, The Influence of Anomalous Phases on the Strength of Titanium Carbide Phase Cemented Cermets, Planseeber. Pulvermet. 26: 42 (1978).Google Scholar
  140. 140.
    E.A. Almond, Strength of Hardmetals, Metal Science 12: 587 (1978).CrossRefGoogle Scholar
  141. 141.
    E.A. Almond and B. Roebuck, The Mechanical Testing of Cemented Carbides, Trans. J. British Ceram. Soc. 79: 53 (1980).Google Scholar
  142. 142.
    H. Grewe and J. Kolaska, Vorgänge und Eigenschaftsveränderungen beim heißisostatischen Nachverdichten von Hartmetallen, Metall 32: 989 (1978).Google Scholar
  143. 143.
    E. Lardner, Isostatic Hot Pressing of Cemented Carbide, Powder Met. 18: 47 (1975).Google Scholar
  144. 144.
    D.N. French and D.A. Thomas, The Nature and Effects of Excess Carbon Defects in Carbide-Cobalt Alloys, Intern. J. Powder Met. 3(3): 7 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Hans Eckart Exner
    • 1
  1. 1.Institut für WerkstoffwissenschaftenMax-Planck-Institut für MetallforschungStuttgartFR Germany

Personalised recommendations