Mechanical Behavior and Electron Microscopy Analysis of W2C

  • J. Dubois
  • T. Epicier
  • C. Esnouf
  • G. Fantozzi


Up to now, a relatively large number of studies has been made on the mechanical behavior of transition metal carbides with the face centered cubic structure (NaCl type). A summary of studies on plasticity until 1970, has been made by Toth.1 Since then, only tantalum carbide and titanium carbide have been the subject of new works, by Martin2 and Chermant.3 In contrast, plastic deformation of hexagonal carbides has been investigated very little. Some studies on the mechanical behavior or microstructure of WC and Mo2C have been reported.4–11Therefore it appears to us of major interest to undertake a study of plastic deformation of W2C at high temperatures (between 800° and 2200°C). In the present study, electron microscope observations (100 KV and 1 MeV) and results of mechanical deformation tests are associated so as to determine the process responsible for the plastic deformation of W2C.


Titanium Carbide Relaxation Test Cross Slip Tantalum Carbide Glycol Monoethylether 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1972.Google Scholar
  2. 2.
    J. L. Martin, These Universite de Paris Nord, 1972.Google Scholar
  3. 3.
    J. L. Chermant, Rapport Scientifique A.T.P., in “Rupture et Fluage,” contract IS04, n° 1791, Octobre 1977.Google Scholar
  4. 4.
    D. J. Rowcliffe, Ph.D. Thesis, Cambridge (1965).Google Scholar
  5. 5.
    R.H.J. Hannink, D.L. Kohlstedt, M.J. Murray, Proc. Roy. Soc. A. 326:409 (1972).CrossRefGoogle Scholar
  6. 6.
    S.R. Shenck, R.J. Gotschall, W.S. Williams, Mater. Sci. Eng. 32:229 (1978).CrossRefGoogle Scholar
  7. 7.
    S.B. Luyckx, Acta Met. 24:233 (1970).CrossRefGoogle Scholar
  8. 8.
    T. Johannesson, B. Lehtinen, Phys. Stat. Sol. (a), 16:615 (1973).CrossRefGoogle Scholar
  9. 9.
    V.K. Sarin, Phil. Mag. 35:139 (1977).CrossRefGoogle Scholar
  10. 10.
    S. Hagege, J. Vicens, G. Nouet, P. Delavignette, Phys. Stat. Sol (a), 61:675 (1980).CrossRefGoogle Scholar
  11. 11.
    J. Dubois, G. Orange, C. Mai, G. Fantozzi, C.R.Acad. Sci. Parist. 287, Series B.:53 (1978).Google Scholar
  12. 12.
    J. Dubois, G. Fantozzi, P. F. Gobin, Rapport Scientifique A. T.P. “Rupture et Fluage,” contrat IS04 n° 1791 (1977).Google Scholar
  13. 13.
    J. Dubois, G. Orange, G. Fantozzi, Scripta Met. 14:14 107 (1980).CrossRefGoogle Scholar
  14. 14.
    G. Orange, J. Dubois, G. Fantozzi, P. F. Gobin, Journees d’Automne, Octobre 1979.Google Scholar
  15. 15.
    D Treheux, J. Dubois, G. Fantozzi, Ceramurgia Inter. to be published.Google Scholar
  16. 16.
    M. Cagnon, Phil. Mag. 24:1465 (1971).CrossRefGoogle Scholar
  17. 17.
    G. Orange, J. Dubois, G. Fantozzi, P. F. Gobin, Mat. Sci. Eng., 34:291 (1978).CrossRefGoogle Scholar
  18. 18.
    T. Epicier, C. Esnouf, J. Dubois, G. Fantozzi, submitted to Scripta Met.Google Scholar
  19. 19.
    W. S. Williams, J. Ap. Phys., 35:1329 (1964).CrossRefGoogle Scholar
  20. 20.
    M. L. Kronberg, Acta Met. 5:507 (1957).CrossRefGoogle Scholar
  21. 21.
    D. Hull, Introduction to Dislocations Pergamon Press, London, 1968.Google Scholar
  22. 22.
    G.E. Hollox, R. E. Smallman, J. Ap. Phys. 37:818 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. Dubois
    • 1
  • T. Epicier
    • 1
  • C. Esnouf
    • 1
  • G. Fantozzi
    • 1
  1. 1.Groupe d’Etudes de Metallurgie Physique et de Physique des MateriauxVilleurbanne CedexFrance

Personalised recommendations