Synthetic Forms of Selenium and Their Chemotherapeutic Uses

  • Raymond J. Shamberger
Part of the Biochemistry of the Elements book series (BOTE, volume 2)


Because of the close resemblance of selenium to the biologically important element sulfur, a strong rationale exists for the incorporation of selenium into potential medicinal agents. In many cases selenium isoesters of sulfur-containing antibacterial agents are as effective as their analogous sulfur compounds or sometimes even more effective. Inorganic selenium compounds, when tested at the same selenium concentration as the active organic selenium compounds, have comparatively negligible antibacterial activity (Green and Bielschowsky, 1942). Many of the selenium compounds studied as potential bactericides during World War II were modeled after the sulfonamide drugs. Although no direct sulfur-selenium interchanges to give the analogous selenoamides have been accomplished, a close derivative may be found in bis(p-aminophenyl) selenide (I) and bis(p-aminophenyl) diselenide (II). (Table 9-1 lists structures I-XV.) The bis(p-aminophenyl) diselenide is very effective against Brucella paramelitensis and Staphylococcus aureus (Green and Bielschowsky, 1942). The diselenide is a thousandfold more effective as an antibacterial agent than bis(p-aminophenyl) disulfide. The corresponding acid is also active against B. paramelitensis and S. aureus (Green and Bielschowsky, 1942). The selenium of sulfathiazole (HI) has shown some activity in vitro against Pneumococcus (Jensen and Schmith, 1941). The methyl alkyl selenoxide hydronitrate (IV) derivatives have been patented as germicides for inclusion in detergent formulations (Priestly, 1972).


Selenium Compound Ehrlich Ascites Tumor Cell Synthetic Form Organoselenium Compound Diphenyl Diselenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, R. H., 1965. Activity of congeners of hydroxyurea against advanced leukemia, Proc. Soc. Exp. Biol. Med. 119:456–458.PubMedGoogle Scholar
  2. Aqrawal, K. C., Booth, B. A., Michaud, R. L., Moore, E. C., and Sartorelli, A. C., 1974. Comparative studies of the antineoplastic activity of 5-hydroxy-2-formylpyridine thiosemicarbazone and its seleno-semicarbazone, guanylhydrazone and semicarbazone analogs, Biochem. Pharmacol. 23:2421–2429.CrossRefGoogle Scholar
  3. Akerfeldt, S., and Fagerlind, L., 1967, Selenophosphorous compounds as powerful Cholinesterase inhibitors, J Med. Chem. 10:115–116.PubMedCrossRefGoogle Scholar
  4. Aktiebolag, A., Antimicrobial seleninic acid compositions, Brit. Pat. 1,174,753; Chem. Abstr. 72:59060 (1970).Google Scholar
  5. Antonucci, A., Foppoli, C., DeMarco, C., and Cavallini, D., 1977. Inhibition of protein synthesis in rabbit reticulocytes by selenaproline, Bull. Mol. Biol. Med. 2:80–84.Google Scholar
  6. Bacq, Z. M., Onkelinx, C., and Barac, G., 1963. Absence d’activite radioprotectrice du phenylselenol chez la souris, C.R. Soc. Biol. 157:899–901.Google Scholar
  7. Badiello, R., and Fielden, E. M., 1970. Pulse radiolysis of selenium-containing radioprotectors: I. selenourea, Int. J. Radiation Biol. 17:1–14.CrossRefGoogle Scholar
  8. Badiello, R., Trenta, A., Mattii, M., and Moretti, S., 1967. Azione radioprotettivadei seleno-derivati: effeto della selenourea “in vivo,” Med Nucl. Radiobiol. Lat. 10:57–68.Google Scholar
  9. Badiello, R., DiMaggio, D. D., Quintiliani, M., and Sapora, O., 1971. The influence of selenurea and of colloidal selenium on the survival of E. coli B/r after X-irradiation, Int. J. Radiat. Biol. 20:61–68.CrossRefGoogle Scholar
  10. Bednarz, K., 1957. Synthesis and biological properties of some new selenosemicarbazides, Dissertationes Pharm. 9:249–254. Chem. Abs. 52:8083 (1958).Google Scholar
  11. Bednarz, K., 1958. Synthesis and biological properties of some new selenosemicarbazones, Dissertationes Pharm. 10:93–98.Google Scholar
  12. Bekemeir, H., Schmollack, W., Feicht, H. J., and Lemitzer, K. H., 1976. The pharmacology of some 1,3-dioxolanes, 1, 3 oxathiolanes and 1, 3-dithiolanes, Pharmazie 31:317–323.Google Scholar
  13. Bergmann, F. and Rashi, M., 1969. Synthesis of new 6-selenopurines by selenohydrolysis of 3-alkyl-6-methylthiopurines, Israeli. Chem. 7:63–71.Google Scholar
  14. Billard, W., and Peets, E., 1974. Sulfhydryl reactivity: Mechanism of action of several antiviral compounds-selenocystine, 4-(α-propinyloxy)-β-nitrostyrene and acetylaranotin, Antimicrob. Agents Chemoth. 5:19–24.CrossRefGoogle Scholar
  15. Blarzino, C., and DeMarco, C., 1977. Selenalysine as subtrate of lysine decarboxylase, It. J. Biochem. 26:444–450, 1977.Google Scholar
  16. Bodkov, I. G., 1969. Effect of vetrazine (3,4-dimethoxybenzylhydrazine), selenophene, and their combination on the activity of the heart during its experimental release from blood circulation, Vop. Farmakol. Regul. Deyatel. Serdsta Mater. Simp. 1969:106–110.Google Scholar
  17. Bogert, M. T., and Stull, A., 1927. Researches on selenium organic compounds. VII. The synthesis of 2-phenyl-, 2-furyl-and 2-thienylbenzoselenazoles of 2-phenyl-benzoselen-azole-4-arsonic acid and of other benzoselenazoles. J. Amer. Chem. Soc. 49:2011–2017.CrossRefGoogle Scholar
  18. Bonner, W. A., and Robinson, A., 1950a. The preparation and properties of phenyl β-D-selenoglucoside and its tetraacetate, J. Amer. Chem. Soc. 72:354–356.CrossRefGoogle Scholar
  19. Breccia, A., Badiello, R., Trenta, A., and Mattii, M., 1969. On the chemical radioprotection by organic selenium compounds in vivo, Radiation Res. 38:483–492.PubMedCrossRefGoogle Scholar
  20. Brucker, W., and Bulka, E., 1966. Radiation protection studies in vitro with organoselenium compounds, Stud. Biophys 1:253–255.Google Scholar
  21. Brucker, W., and Rohde, H. G., 1968. Zum einfluss von selenorganischen Verbindungen auf den Strahleneffekt von Phycomyces blakesleeanus, Pharmazie 23:310–315.PubMedGoogle Scholar
  22. Buu-Hoi, N. P., Lambelin, G., Roba, J., Jacques, G., and Gillet, C., 1970. 1-Phenyl-2-aminoethanols and their β-sympatholytic and vasodilating activities, Belg. Pat. 739, 678; Chem. Abstr. 73, 109490 (1970).Google Scholar
  23. Carr, A., Sawicki, E., and Ray, F. E., 1958. 8-selenopurines, J. Org. Chem. 23:1940–1942.CrossRefGoogle Scholar
  24. Cavallini, D., Federici, G., Dupre, S., Cannella, C., and Scandurra, R., 1980. Ambiguities in the enzymology of sulfur-containing compounds, in Natural Sulfur Compounds, D. Cavallini, G. E. Gaull, and V. Zappia, (eds.), Plenum Press, New York, pp. 511–523.CrossRefGoogle Scholar
  25. Chan, W. Y., and du Vigneaud, 1972. Comparison of the pharmacologic properties of oxytocin and its highly potent analogue, desamino-oxytocin, Endocrinology 71:977–982.CrossRefGoogle Scholar
  26. Chernysheva, L. F. and Eliseeva, S. V., 1966. Eliminating cardiac effects of histamine with antihistaminic selenophene derivatives, Farmakol. Toksikol 29:679–681.PubMedGoogle Scholar
  27. Chernysheva, L. F., and Galbershtam, M. A., 1967. Antihistamine activity of new substances of the selenophene class. Farmakol. Toksikol. Prep. Selena Mater. Simp. 1967, 44–50.Google Scholar
  28. Chernysheva, L. F., and Kudrin, A. N., 1967. Pharmacological activity of the selenophene class, Farmakol. Toksikol. Prep. Selena Mater. Simp., 1967:50–53.Google Scholar
  29. Chernysheva, L. F., Kudrin, A. N., and Gigawii, V., 1969. preventative and medical treatment of histaminic and traumatic shock by an antihistamine preparation from the selenophene class, Wop. Farmkol. Regul. Diyatel. Serdtsa Mater. Simp., 1969:110–114.Google Scholar
  30. Chu, S. H., and Davidson, D. D., 1972. Potential antitumor agents. 2 and-2-Deoxy-6-selenoguanosine and related compounds, J. Med. Chem. 15:1088–1089.PubMedCrossRefGoogle Scholar
  31. Chu, S. H., and Mautner, H. G., 1962. Potential antiradiation agents. II. Selenium analogs of 2-aminoethylisothiuronium hydrobromide and related compounds. J. Org. Chem. 27:2899–2901.CrossRefGoogle Scholar
  32. Chu, S. H., and Mautner, H. G., 1968. Sulfur and selenium compounds related to acetylcholine and choline. VII. Isologs of benzoylthionocholine and of 2-dimethylaminoethyl thionobenzoate, J. Med. Chem. 11:446–450.PubMedCrossRefGoogle Scholar
  33. Chu, Shih-Hsi, Hillman, G. R., and Mautner, H. G., 1972. Sulfur and selenium compounds related to acetylcholine and choline. II. Selenocarbonyl ester and selenocarboxyamide analogs of local anesthetics, J. Med. Chem. 15:760–762.PubMedCrossRefGoogle Scholar
  34. Comrie, A. M., Dingwall, D., and Stenlake, J. B., 1964. Some 2-iminoselenazolidin-4-ones and related compounds, J. Pharm. Pharmacol. 16:268–272.PubMedCrossRefGoogle Scholar
  35. Corbett, C. E., Limongi, J. P., and Ramos, A. O., 1957. Anticholinergic activity of the ortho-carboxybenzeneseleninic acid, Arch. Int. Pharmacodyn. 111:245–251.PubMedGoogle Scholar
  36. Craig, P. N., 1962. Substituted phenoselenazine compounds, U.S. Pat. 3,043,839; Chem. Abst. 57:16636 (1962).Google Scholar
  37. Dickson, R. C., and Tappel, A. L., 1969. Effects of selenocystine and selenomethionine on activation of sulfhydryl enzymes, Arch. Biochem. Biophys. 131:100–110.PubMedCrossRefGoogle Scholar
  38. DeMarco, C., Rinaldi, A., Dessi, M. R., and Dernini, S., 1976b. Oxidation of S-e-carboxymethyl-selenocysteine by L-aminoacid oxidase and by Daspartate oxidase, Mol. Cell Biochem. 12:89–92.CrossRefGoogle Scholar
  39. Dyer, E., and Minnier, C. E., 1968. Acylations of some 2-amino-6-halo and 2-amino-5-alkylthiopurines, J. Med. Chem. 11:1232–1234.PubMedCrossRefGoogle Scholar
  40. Ehrlich, P., and Bauer, H., 1915. Uber 3,6-diaminoseleno-pyronin op3,6-diaminoxantho-selenonium, Ber. Deutsch. Chem. Ges. 48:502–508.CrossRefGoogle Scholar
  41. Elion, G. B., Burgi, E., and Hitchings, G. H., 1952. Studies on condensed pyrimidine systems. X. The synthesis of some 6-substituted purines, J. Am. Chem. Soc. 74:411–414.CrossRefGoogle Scholar
  42. Endo, H., Sato, K., and Kawasaki, T., 1963. Synthesis of pyrimido (4,5-c) op2,1,3,) selenadiazoles and their antitumor activity on mouse leukemia, L 1210, Sci. Rep. Res. Inst. Tohoku Univ. Ser. C. 11:201–202.Google Scholar
  43. van Es, T., and Whistler, R. L., 1967. Derivatives of 5-seleno-D-xylose, Tetrahedron 23:2849–2853.CrossRefGoogle Scholar
  44. Fabry, M., Hermann, P., and Rychlik, I., 1977. Poly(A)-directed formation of thialysine oligapeptides in E. coli cell-free system, Collec. Czechoslov. Commun. 42:1077–1081.CrossRefGoogle Scholar
  45. Giordano, W. C., 1963. One application treatment for tinea versicolor, J. Med. Soc. N.J. 60:186–187.PubMedGoogle Scholar
  46. Glassman, J. M., Begany, A. J., Pless, H. H., Hudyma, G. M., and Seifter, J., 1960. The pharmacology of some phenoselenazines, Fed. Proc. Fed. Am. Soc. Exp. Biol. 19:280.Google Scholar
  47. Goble, F. C., Konopka, E. A., and Zoganas, H. C., 1967. Chemotherapeutic activity of certain organic selenium compounds in experimental leptospirosis, Antimicrob. Agents Chem. 7:531–533.Google Scholar
  48. Green, H. N., and Bielschowsky, F., 1942. Mode of action of sulphanilamide; relation of chemical structure to bacteriostatic action of aromatic sulphur, selenium and tellurium compounds, Brit. J. Exp. Path. 23:13–26.Google Scholar
  49. Günther, W. H., 1967. Methods in selenium chemistry. III. The reduction of diselenides with dithiothreitol, J. Org. Chem. 32:3931.CrossRefGoogle Scholar
  50. Günther, W. H. H., and Mautner, H. G., 1960. Pantethine analogs. The condensation of pantothenic acid with selenocystamine with bis(β-aminoethyl) sulfide and with 1,2-dithia-4-azapane (a new ring system), J. Am. Chem. Soc. 82:2762–2765.CrossRefGoogle Scholar
  51. Günther, W. H. H., and Mautner, H. G., 1965a. Analogs of parasympathetic neuroeffectors. 3. Synthesis and study of cholineselenol and related compounds, J. Med. Chem. 8:845–847.PubMedCrossRefGoogle Scholar
  52. Günther, W. H. H., and Mautner, H. G., 1965b. The synthesis of coenzyme A, J. Am. Chem. Soc. 87:2708–2716.CrossRefGoogle Scholar
  53. Hannig, E., 1963. Zur C-4-benzoylathylierung des Phenylbutazons. I. “Uber Selenophen-olderivate”, Arch. Pharm. 296:441–445.CrossRefGoogle Scholar
  54. Hannig, E., 1964. Zur darstellung and Wirkung einiger selenhaltigen beta-ketobasen. 2. Uber selenophenolderivate, Pharmazie 19:201–202.PubMedGoogle Scholar
  55. Heilbronn-Wilkstrom, E., 1965. Phosphorylated Cholinesterase their formation, reactions and induced hydrolysis, Svensk Kern. Tidskr. 77:598–601.Google Scholar
  56. Hiscock, S. M., Swann, D. A., and Turnbull, J. H., 1970. Axial and equatorial selenols: 3α and 3β-selenyl derivatives of cholestane and androstanone, J. Chem. Soc. D 1970:1310.CrossRefGoogle Scholar
  57. Hofinger, M., Thorpe, T., Bouchet, M., and Gaspar, T., 1980. Auxin-like activity of (benzo(b)selenienyl-3) acetic acid, Acta Physiol. Plantar 2:275–280.Google Scholar
  58. Hollo, Z. M., and Zlatarov, S., 1960. The prevention of death from x-rays by selenium salts given after irradiation, Naturwissenschaften 47:328.CrossRefGoogle Scholar
  59. Hoskin, F. C., Kremzner, L. T., and Rosenberg, P., 1969. Effects of some Cholinesterase inhibitors on the squid giant axon. Their permeability, detoxification and effects on conduction and acetylcholinesterase activity, Biochem. Pharmacol. 18:1727–1737.PubMedCrossRefGoogle Scholar
  60. Hunt, D. E., and Pittillo, R. F., 1966. Antimicrobial activity of 1,2,5-selenadiazoles, Antimicrobial Agents Chemother. 6:551–554.Google Scholar
  61. Jaffe, J. J., and Mautner, H. G., 1960. A Comparison of the biological properties of 6-selenopurine, 6-selenopurine ribonucleoside, and 6-mercaptopurine in mice, Cancer Res. 20:381–386.PubMedGoogle Scholar
  62. Jensen, K. A., and Schmith, K., 1941. Sulfanilyl derivatives of heterocyclic amines. IV. Derivatives of selenazole, Dansk. Tidskr. Farm. 15:197–199.Google Scholar
  63. Jilek, J. O., Rajsner, M., Pomykacek, J., and Protiva, M., 1965. Synthetic ataractics. XII. Prothixene and analogs. A new synthesis of chlorprothixene, Cesk. Farm. 14:294–303.PubMedGoogle Scholar
  64. Jilek, J., Sindelar, K., Metysova, J., Metys, J., Pomykacek, J., and Protiva, M., 1970. Neurotropic and psychotropic agents. XLIV. lO-(Amino-alkoxy) and 10-piperazino derivatives of dibenzo(b,f)thiepin and related systems, Collection Czech. Chem. Commun. 35:3721–3732.CrossRefGoogle Scholar
  65. Keimatsu S., and Yokota, K., 1931. Synthesis of organo-selenium compounds, J. Pharm. Soc. Japan 51:605–616.Google Scholar
  66. Keimatsu, S., Yokota, K., and Satoda, I., 1933. Organoselenium compounds. VI. J. Pharm. Soc. Japan 53:994–1046.Google Scholar
  67. Klayman, D. L., 1965. Synthesis of aminoethyl-substituted selenium compounds, J. Org. Chem. 30:2454–2456.CrossRefGoogle Scholar
  68. Klayman, D. L., 1973. Selenium compounds as potential chemotherapeutic agents, in Organic Selenium Compounds Their Chemistry and Biology, D. L. Klayman and W. H. H. Günther (eds), John Wiley and Sons, New York, pp. 727–761.Google Scholar
  69. Kocourek, J., Klenha, J., and Jiracek, V., 1963. Preparation of 1-seleno-D-glucose, Chem. Ind. (London), 1397.Google Scholar
  70. Konopelski, J. P., Djerassi, C., and Raynaud, J. P., 1980. Synthesis and biochemical screening of phenylselenium-substituted steroid hormones, J. Med. Chem. 23:722–726.PubMedCrossRefGoogle Scholar
  71. Korzhova, V. V., and Smirnova, E. I., 1969. Pathohistological and histochemical changes in some internal organs of rat fetuses under the influence of experimental late toxicosis and medical treatment of selenophene, Vop. Farmakol. Regul. Dey atei. Serdtsa Mater. Simp. 1969:119–122.Google Scholar
  72. Kozak, I., Kronrad, L., and Dienstbier, Z., 1976. Distribution and behaviour of isoselenouronium salts in the body, Strahlentherapie 151:84–87.PubMedGoogle Scholar
  73. Kudrin, A. N., and Zaidler, Y. I., 1968. Search for compounds with antiarrhythmic activity among the derivatives of selenophene, amines of the acetylene series, betaaminoketones, aminopyrazoles, monoamino oxidase inhibitors, Farmakol Toksikol 31:41–44.PubMedGoogle Scholar
  74. Kuhn, S. J., and Mclntyre, J. S., 1970. Fungicidal and bactericidal 6-methyl-3(3-aryl-3-arylthio (seleno) propionyl)-4-hydroxy-2H-pyran-2-ones, U.S. Pat. 3,493,586; Chem. Abstr. 72:90289 (1970).Google Scholar
  75. Kuliev, T. A., Babaev, R. A., and Kuliev, K. A., 1981. Cytofluorimetric data on the dynamics of the nucleic acid content on the liver of radiation — exposed and intact animals treated with sodium selenite, Radiobiologiya 21:451–453.Google Scholar
  76. Leonicini, G., Maresca, M., and Bonsignmore, A., 1977. D,L-Glyceraldehyde 3-phosphate breakdown in the presence of selenalysine, Ital. J. Biochem. 26:467–472.Google Scholar
  77. LePage, G. A., and Howard, N., 1963. Chemotherapy studies of mammary tumors of C3H mice, Cancer Res. 23:622–627.PubMedGoogle Scholar
  78. Lesser, R., and Weiss, R., 1912. Uberden selen-indigo (bis-selenonaphthen-indigo) und selenhaltige aromatische Verbindungen, Ber. 45:1835–1841.Google Scholar
  79. Limongi, J. P., 1955. Adrenergic blocking action of orthocarboxybenzeno seleninic acid, Arch. Int. Pharmacodyn. 103:160–166.PubMedGoogle Scholar
  80. Lipmann, J., 1945. Acetylation of sulfanilamide by liver homogenates and extracts, J. Biol. Chem. 160:173–190.Google Scholar
  81. Lotis, V. M., Kudrin, A. N., Korzhova, V. V., and Chernysheva, L. F., 1967. Use of new selenophene preparation for treatment of late pregnancy toxemia, Formakol. Toksikol. Prep. Selena Mater. Simp. 1967:64–68.Google Scholar
  82. Maeda, M., Abiko, N., and Sasaki, T., 1981. Synthesis of seleno-and thioguanine-platinum (II) complexes and their antitumor activity in mice, J. Med. Chem. 24:167–169.PubMedCrossRefGoogle Scholar
  83. Markees, D. G., Dewey, V. C., and Kidder, G. S., 1968. The synethesis and biological activity of substituted 2,6-diaminopyridines, J. Med. Chem. 11:126–129.PubMedCrossRefGoogle Scholar
  84. Matti, J., 1940. Organic derivatives of selenium, Bull Soc. Chim. Fr. 7:617–621.Google Scholar
  85. Mautner, H. G., 1956. The snythesis and properties of some selenopurines and selenopyr-imidines, J. Am. Chem. Soc. 78:5292–5294.CrossRefGoogle Scholar
  86. Mautner, H. G., 1958. A comparative study of 6-selenopurine and 6-mercaptopurine in the Lactobacillus casei and Ehrlich ascites tumor systems. Biochem. Pharmacol. 1:169–173.CrossRefGoogle Scholar
  87. Mautner, H. G., and Clayton, E. M., 1959. 2-selenobarbiturates. Studies of some analogous oxygen, sulfur and selenium compounds, J. Am. Chem. Soc. 81:6270–6273.CrossRefGoogle Scholar
  88. Mautner, H. G., and Jaffe, J. J., 1958. The activity of 6-selenopurine and related compounds against some experimental mouse tumors, Cancer Res. 18:294–298.PubMedGoogle Scholar
  89. Mautner, H. G., Kumler, W. D., Okano, Y., and Pratt, R., 1956. Antifungal activity of some substituted selenosemicarbazones and related compounds, Antibiot. Chemother. 6:51–55.Google Scholar
  90. Mautner, H. G., Chu, S. H., Jaffe, J. J., and Sartorelli, A. C., 1963. The synthesis and antineoplastic properties of selenoguanine, selenocytosine and related compounds, J. Med. Chem. 6:36–39.PubMedCrossRefGoogle Scholar
  91. Mautner, H. G., Bartels, E., and Webb, G. D., 1966. Sulfur and selenium isologs related to acetylcholine and choline. IV. Activity in the electroplax preparation, Biochem. Pharmacol. 15:187–193.PubMedCrossRefGoogle Scholar
  92. Milne, G. H., and Townsend, L. B., 1974. Synthesis and antitumor activity of a and β-2’-deoxyselenoguanosine and certain related derivatives, J. Med. Chem. 17:263–268.PubMedCrossRefGoogle Scholar
  93. Mueller, A. G., and Phillips, J. P., 1967. Heterocycles containing (8-hydroxy-5-methyl-7-quinolyl) vinyl groups, J. Med. Chem. 10:110–111.PubMedCrossRefGoogle Scholar
  94. Müller, P. Buu-Hoi, N. P., and Rips, R., 1959. Preparation and reactions of phenoxazine and phenoselenazine, J. Org. Chem. 24:37–39.CrossRefGoogle Scholar
  95. Ojasco, T., and Raynaud, J. P., 1978. Unique steroid congeners for receptor studies, Cancer Res. 38:4186–4198.Google Scholar
  96. Oxford, J. S., 1973. An inhibitor of the particle-associated RNA-dependent polymerase of influenza A and B virus, J. Gen. Virol. 18:11–19.PubMedCrossRefGoogle Scholar
  97. Phillips, B. M., Sancilio, L. F., and Kurchacova, E., 1967. In vitro assessment of antiinflammatory activity, J. Pharm. Pharmacol. 19:696–697.PubMedCrossRefGoogle Scholar
  98. Pianka, M., and Hall, J. C., 1959. Fungitoxicity. II. Fungitoxicity of certain anilinovinyl quaternaries, J. Sci. Food Agr. 10:385–388.CrossRefGoogle Scholar
  99. Priestly, H. M., 1972. Dialkyl selenoxide hydronitrates as germicides in detergent compositions, U.S. Pat. 3,642,909; Chem. Abstr. 76:112693 (1972).Google Scholar
  100. Protiva, M., Rajsner, M., Adlerova, E., Seidlora, V., and Vejdelek, Z. J., 1964. Neurotropic and psychotropic substances. I. New types of 6, 11-dihydrodibenzo(b,e)thiepine derivatives and analogs, Collection Czech. Chem. Commun. 29:2161–2181.Google Scholar
  101. Roberts, M. E., 1963. Antiinflammation studies. II. Antiinflammatory properties of selenium, Toxicol. Appl. Pharmacol. 5:500–506.PubMedCrossRefGoogle Scholar
  102. Robinson, H. M., and Jaffe, S., 1956. Selenium sulfide in the treatment of pityriasis versicolor, J. Am. Med. Assoc. 162:113–114.PubMedCrossRefGoogle Scholar
  103. Romanova, L. A., Gorkin, V. Z., Kudrin, A. N., and Chernysheva, L. F., 1968. Inhibition of monoamine oxidase activity with antihistamine preparations of the selenophene class, Byul Eksp. Biol. Med. 66:39–42.Google Scholar
  104. Roseli, S., and Axelrod, J., 1963. Relation between blockage of H3-noradrenaline uptake and pharmacological actions produced by phenothiazine derivatives, Experientia 19:318–319.CrossRefGoogle Scholar
  105. Rosenberg, P., and Mautner, H. G., 1967. Acetylcholine receptor: Similarity in axons and junctions, Science 155:1569–1571.PubMedCrossRefGoogle Scholar
  106. Ross, A. F., Agarwal, K. C., Chu, S. H., and Parks, R. E., Jr., 1973. Studies on the biochemical actions of 6-selenoguanine and 6-selenoguanosine, Biochem. Pharmacol. 22:141–154.PubMedCrossRefGoogle Scholar
  107. Roy, J., Schwartz, I. L., and Walter, R., 1970. Nucleophilic scission of disulfides by selenolate. Synthesis and some properties of acyclic thiolselenenates, J. Org. Che. 35:2840–2842.CrossRefGoogle Scholar
  108. Sadek, S. A., Shaw, S. M., Kessler, W. V., and Wolf, G. C., 1981. Selenosteroids as potential estrogen-receptor scanning agents, J. Org. Chem. 46:3259–3262.CrossRefGoogle Scholar
  109. Schneider, W., and Beuther, A., 1919. Schwefelhaltige disaccharide aus galaktose, Ber. Deutsch. Chem. Ges. 52:2135–2149.CrossRefGoogle Scholar
  110. Schneider, W., and Wrede, F., 1917. Synthese eines schwefelhaltigen und eines selenhaltigen disaccharides, Ber. Deutsch. Chem. Ges. 50:793–804.CrossRefGoogle Scholar
  111. Schwarz, K., 1965. Role of vitamin E, selenium and related factors in experimental nutritional liver disease, Fed. Proc. Fed. Am. Soc. Exp. Biol. 24:58–67.Google Scholar
  112. Scioscia-Santoro, A., Cavallini, D., Degener, A. M., Perez-Bercoff, R., and Rita, G., 1977. Effect of L-aminoethyl-cysteine, a sulfur analogue of L-lysine, on virus multiplication in mammalian cell cultures, Experientia 33:451–453.PubMedCrossRefGoogle Scholar
  113. Scott, K. A., and Mautner, H. G., 1964. Analogs of parasympathetic neuroeffectors-II. Comparative pharmacological studies of acetylcholine, its thio and seleno analogs, and their hydrolysis products, Biochem. Pharmacol. 13:907–920.PubMedCrossRefGoogle Scholar
  114. Scott, K. A., and Mautner, H. G., 1967. Sulfur and selenium isologs related to acetylcholine and choline. IX. Further comparative studies of the pharmacological effects of acetylcholine and its thio and seleno analogs and their hydrolysis products, Biochem. Pharmacol. 16:1903–1918.PubMedCrossRefGoogle Scholar
  115. Segaloff, A., and Gabbard, R. B., 1965. 3β-Seleno steroids. 3β-Seleno derivatives pregnenolone (3β-hydroxypregn-5-en-20-one) and dehydroepiandrosterone (3β-hydroxyan-drost-5-en-17-one and comparison with analogs containing sulfur or oxygen, Steroids 5:219–240.CrossRefGoogle Scholar
  116. Segaloff, A., and Gabbard, R. B., 1968. Seleno-substituted steroids, U.S. Pat. 3,327,173; Chem. Abstr. 69:P77632q, 1968.Google Scholar
  117. Senning, A., and Sorensen, O. N., 1966. The preparation of some selenouronium salts and selenouronium betaines, Acta Chem. Scand. 20:1445–1446.CrossRefGoogle Scholar
  118. Shealy, Y. F., and Clayton, J. D., 1967. 1,2,5-Selenadiazoles. Synthesis and properties, J. Heterocycl. Chem. 4:96–101.CrossRefGoogle Scholar
  119. Shimazu, F., and Tappel, A. L., 1964a. Selenoamino acids as radiation protectors in vitro, Radiat. Res. 23:210–217.PubMedCrossRefGoogle Scholar
  120. Sindelar, K., Svatek, E., Metysova, J., Metys, J., and Potiva, M., 1969a. Neurotropic and psychotropic agents. XXXVII. Derivatives of selenoxanthene, Collect. Czech. Chem. Commun. 34:3792–3800.Google Scholar
  121. Sindelar, K., Metysova, J., and Protiva, M., 1969b. Neurotropic and psychotropic, agents. XXXVIII. Derivatives of 10, 11-dihydrodibenzo(b,f) selenepin, Collect. Czech. Chem. Commun. 34:3801–3810.Google Scholar
  122. Sindelar, K., Metysova, J., Metys, J., and Protiva, M., 1969c. 8-chloro-10 (4-methyl-l-piperazinyl)dibenzo(b,f)-thiepin and analogs, new highly active neuroleptics, Naturwissenschaften 56:374.PubMedCrossRefGoogle Scholar
  123. Supniewski, J., Misztal, S., and Krupinska, J., 1954. Selenium and sulfur derivatives of Chloromycetin, Bull. Acad. Polon. Sci. Classe II 2:153–159.Google Scholar
  124. Takeda, K., Kitagawa, R., Konaka, T., Noguchi, R., Nishimura, H., Shimoaka, N., Kimura, N., Kaida, K., Sugiyama, K., Ilada, H., and Maki, T., 1952. Annual Report Shinogi, Res. Lab. 2:12. Cited by D. L. Kayman, 1973. Selenium compounds as potential chem-otherapeutic agents, in D. Klayman and W. H. Günther (eds.), Organic Selenium Compounds their Chemistry and Biology, John Wiley and Sons, New York, pp. 727–761Google Scholar
  125. Takeda, K., Nishimura, H., Simaoka, N., Noguchi, R., and Nakajima, K., 1955. Anti-tumor substances. I. Effect of some organic selenium compounds on the Ehrlich ascites carcinoma, Ann. Rept. Shionogi Res. Lab. 5:1–16.Google Scholar
  126. Townsend, L. B., and Milne, G. H., 1970. Synthesis of the selenium congeners of the naturally occurring nucleoside guanosine, 6-selenoguanosine, J. Heterocyc. Chem. 7:753–754.CrossRefGoogle Scholar
  127. Wagner, G., and Nuhn, P., 1965. Uber die säurekatalysierte hydrolyse von selenoglucosiden. 7. Uber “selenoglykoside”. Arch. Pharm. 298:692–695.CrossRefGoogle Scholar
  128. Walter, R., and duVigneaud, V., 1965 6-Hemi-L-selenocystine-oxytocin and 1-deamino-6-hemi-L-selenocystine-oxytocin, highly potent isologs of oxytocin and 1-deamino-oxy-tocin, J. Am. Chem. 87:4192–4193.CrossRefGoogle Scholar
  129. Weaver, W. E., and Whaley, W. M., 1946. Alky seleno cyanates, J. Am. Chem. Soc. 68:2115–2116.CrossRefGoogle Scholar
  130. Weisburger, A. S., and Suhrland, L. G., 1956a. Studies on analogues of L-cysteine and L-cystine. III. The effect of selenium cystine on leukemia. Blood 11:19–30.Google Scholar
  131. Weisburger, A. S., and Suhrland, L. G., 1956b. Studies on analogues of L-cysteine and L-cystine. II. The effect of selenium cystine on Murphy lymphosarcoma tumors cells in the rat, Blood 11:11–18.Google Scholar
  132. Weisburger, A. S., Suhrland, L. G., and Seifter, J., 1956. Studies on analogues, of L-cysteine and L-cystine. I. Some structural requirements for inhibiting the incorporation of radioactive L-cystine by leukemic leukocytes, Blood 11:1–10.Google Scholar
  133. Williams, R. J., Truesdail, J. H., Weinstock, H. H., Rohramann, E., Lyman, C. M., and McBurney, C. H., 1938. Pantothenic acid. II. Its concentration and purification from liver, J. Am. Chem. Soc. 60:2719–2723.CrossRefGoogle Scholar
  134. Wolff, M. E., and Zanati, G., 1970. Preparation and androgenic activity of novel heterocyclic steroids, Experientia 26:1115–1116.PubMedCrossRefGoogle Scholar
  135. Wong, A. S., Fasanella, R. M., Haley, L. D., Marshall, C. L., and Krehl, W. A., 1956. Selenium (selsum) in the treatment of marginal blepharitis, A.M.A. Arch. Ophth. 55:246–253.PubMedCrossRefGoogle Scholar
  136. Wrede, F., 1917. Synthesis of two new disaccharides and their biological behavior. Biochem. Z. 83:96–102.Google Scholar
  137. Zsolnai, T., 1962. Attempts to find new fungistatics. IV. Organic sulfur compounds, Biochem. Pharmacol. 11:271–297.CrossRefGoogle Scholar
  138. Zingaro, R. A., and Thomson, J. K., 1973. Thio and seleno sugar esters of dialkylarsinous acids, Carbohydrate Res. 29:147–152.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Raymond J. Shamberger
    • 1
  1. 1.The Cleveland Clinic FoundationClevelandUSA

Personalised recommendations