Biological Interactions of Selenium with Other Substances

  • Raymond J. Shamberger
Part of the Biochemistry of the Elements book series (BOTE, volume 2)


Single subcutaneous injections of cadmium chloride in amounts much below toxic levels selectively damage the testis of rats and other laboratory animals (Parizek, 1957). The site and mode of cadmium action have not been satisfactorily established even though there is general agreement that testicular injury is secondary to vascular changes. It is believed that cadmium specifically damages the testicular artery-pampiniform plexus complex and its countercurrent exchange mechanism (Gunn et al., 1963). Mason et al., (1964) believe that because of the sluggish blood flow through the intratesticular course of the testicular artery and its end-arterial type of capillary bed, cadmium might produce increased permeability of the capillary wall and perhaps may act directly on the parenchyma of the testis. This next produces an intertubular edema, increased intratesticular pressure, and interference with the vascular supply to the testis, which causes ischemia and necrosis of the tissue.


Sodium Selenite Selenium Deficiency Dietary Selenium Dietary Cadmium Trace Element Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, J., and Aaseth, J., 1980. Biliary excretion of copper and zinc in the rats as influenced by diethylmaleate, selenite, and diethyldithiocarbamate, Biochem. Pharmacol. 29:2129–2133.PubMedCrossRefGoogle Scholar
  2. Amer, M. A., St. Laurent, G. J. and Brisson, G. J., 1973. Supplemental copper and selenium for calves: Effects upon ceruloplasmin activity and liver copper concentration, Can. J. Physiol. Pharmacol. 51:649–653.PubMedCrossRefGoogle Scholar
  3. Amor, A. J., and Pringle, P., 1945. A review of selenium as an industrial hazard, Bull. Hyg. 20:239–241.Google Scholar
  4. Axelsson, B., and Piscator, M., 1966. Renal damage after prolonged exposure to cadmium. An experimental study, Arch. Environ. Health 12:360–373.PubMedGoogle Scholar
  5. Bell, M. C., Bacon, J. A., Bratton, G. R., and Wilkinson, J. E., 1978. Effects of dietary selenium and lead on selected tissues of chicks, in Trace Element Metabolism in Animals, Vol. 3, M. Kirchgessner (ed.), Freising-Weihenstephan, West Germany, pp. 604–607.Google Scholar
  6. Bennets, H. W., 1959. Copper and cobalt deficiency of livestock in Western Australia, J. Agric. West. Aust. 8(3rd series):631–636.Google Scholar
  7. Bloch, H., and Hottinger, A., 1943. Creatinuria in poisoning by tri-o-cresylphosphate and the influence of vitamin E upon it, Z. Vitaminforsch 13:9–18.Google Scholar
  8. Black, R. S., Whanger, P. D., and Tripp, M. J., 1979. Influence of silver, mercury, lead, cadmium, and selenium on glutathione peroxidase and transferase activity in rats, Biol. Trace Element Res. 1:313–324.CrossRefGoogle Scholar
  9. Bonhorst, C. W., 1955. Selenium poisoning. Anion antagonists in yeast as indicators of the mechanism of selenium toxicity, J. Agr. Food Chem. 3:700–703.CrossRefGoogle Scholar
  10. Boyne, R., and Arthur, J. R., 1981. Effects of selenium and copper deficiency on neutrophil function in cattle, J. Comp. Path. 91:271–276.PubMedCrossRefGoogle Scholar
  11. Bunn, C. R., and Matrone, G., 1966. In vivo interactions of cadmium, copper, zinc, and iron in the mouse and rat, J. Nutr. 90:395–399.PubMedGoogle Scholar
  12. Bunyan, J., Diplock, A. T., Cawthrone, M. A., and Green, J., 1968. Vitamin E and stress 8. Nutritional effects of dietary stress with silver in vitamin E-deficient chicks and rats, Brit. J. Nutr. 22:165–182.PubMedCrossRefGoogle Scholar
  13. Burch, R. E., Williams, R. V., Hahn, H. K. J., Jetton, M. M., and Sullivan, J. F., 1975. Tissue trace element and enzyme content in pigs fed a low manganese diet. I. A relationship between manganese and selenium, J. Lab. Clin. Med. 86:132–139.PubMedGoogle Scholar
  14. Burk, R. F., and Master, B. S. S., 1975. Some effects of selenium deficiency on the hepatic microsomal cytochrone P-450 system in the rat, Arch. Biochem. Biophys. 170:124–131.PubMedCrossRefGoogle Scholar
  15. Burk, R. F., Foster, K. A., Greenfield, P. M., and Kiker, K. W., 1974. Binding of simultaneously administered inorganic selenium and mercury to a rat plasma protein, Proc. Soc. Exp. Biol. Med. 145:782–785.PubMedGoogle Scholar
  16. Cabe, P. A., Carmichael, N. G., and Tilson, H. A., 1979. Effects of selenium, alone and in combination with silver or arsenic in rats, Neurobehav. Toxicol. 1:275–278.PubMedGoogle Scholar
  17. Cappon, C. J., and Smith, J. C., 1981. Chemical form and distribution of mercury and selenium in eggs from chickens fed mercury-contaminated grain, Bull. Environ. Contam. Toxicol. 26:472–478.PubMedCrossRefGoogle Scholar
  18. Carlton, W. W., and Kelly, W. A., 1967. Tellurium toxicosis in Pekin ducks, Toxicol. Appl. Pharmacol. 11:203–214.CrossRefGoogle Scholar
  19. Carpentar, H. M., Jenden, D. J., Shulman, N. R., and Tureman, I. R., 1959. Toxicology of a triarylphosphate oil. I. Experimental toxicology, A.M.A. Arch. Ind. Health 20:234–252.Google Scholar
  20. Cerklewski, F. L., and Forbes, R. M., 1976. Influence of dietary selenium on lead toxicity in the rat, J. Nutr. 106:778–783.PubMedGoogle Scholar
  21. Chen, R. W., Whanger, P. D., and Weswig, P. H., 1975. Selenium-induced redistribution of cadmium binding to tissue proteins: A possible mechanism of protection against cadmium toxicity, Bioinorg. Chem. 4:125–133.PubMedCrossRefGoogle Scholar
  22. Chiquoine, A. D., 1965. Effect of cadmium chloride on the pregnant albino mouse, J. Reprod. Fertil. 10:263–265.PubMedCrossRefGoogle Scholar
  23. Chmielnicka, J., and Brezeznicka, E. A., 1978. The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds, Bull. Environ. Contamin. Toxicol. 19:183–190.CrossRefGoogle Scholar
  24. Choudhury, H., Hasting, L., Menden, E., Brockman, D., Cooper, G. P., and Petering, H. G., 1978. Effects of low level prenatal cadmium exposure on trace metal body burden and behavior in Sprague-Dawley rats, in Proceedings of the 3rd International Symposium on Trace Element Metabolism in Man and Animals, M. Kirchgessner (ed.) Freising-Weihenstephan, West Germany, pp. 549–552.Google Scholar
  25. Coleman, J. E., and Vallee, B. L., 1961. Metallocarboxypeptidases: Stability constants and enzymatic characteristics, J. Biol. Chem. 236:2244–2249.PubMedGoogle Scholar
  26. Cotzias, G. C., and Papavasiliou, P. S., 1964. Specificity of zinc pathway through the body: homeostatic considerations, Am. J. Physiol. 206:787–792.PubMedGoogle Scholar
  27. Dam, H., Nielsen, G. K., Prange, I., and Sondergaard, E., 1958. Exudative diathesis produced by vitamin E-deficient diets without polyenoic fatty acids, Experientia 14:291–294.PubMedCrossRefGoogle Scholar
  28. Dial, N. A., 1976. Methylmercury: Teratogenic and lethal effects in frog embryos, Tetratology 13:327–333.CrossRefGoogle Scholar
  29. Dial, N. A., 1978. Methylmercury: Some effects on embryogenesis in the Japanese medaka, Oryzias latipes, Teratology 17:83–92.CrossRefGoogle Scholar
  30. Diplock, A. T., Green, J., Bunyan, J., McHale, D., and Muthy, I. R., 1967. Vitamin E and stress 3. The metabolism of D-α-tocopherol in the rat under dietary stress with silver, Brit. J. Nutr. 21:115–125.PubMedCrossRefGoogle Scholar
  31. Doisy, E. A., 1973. Micronutrient control of biosynthesis of clotting proteins and cholesterol, in Trace Substances in Environmental Health, Vol. 6, D. D. Hemphill (ed.), University of Missouri Press, Columbia, Missouri, pp. 193–199.Google Scholar
  32. Draper, H. H., James, M. F., and Johnson, B. C., 1952. Trio-o-cresylphosphate as a vitamin E antagonist for the rat and lamb, J. Nutr. 47:583–599.PubMedGoogle Scholar
  33. Dubois, K. P., Moxon, A. L., and Olson, O. E., 1940. Further studies on the effectiveness of arsenic in preventing selenium poisoning, J. Nutr. 19:477–482.Google Scholar
  34. Early, J. L., and Schnell, R. C., 1981. Selenium antagonism of cadmium-induced inhibition of hepatic drug metabolism in the male rat, Toxicol. Appl. Pharmacol. 58:57–66.PubMedCrossRefGoogle Scholar
  35. El-Begearmi, M. M., Sunde, M. L., and Ganther, H. E., 1977. A mutual protective effect of mercury and selenium in Japanese quail, Poult. Sci. 56:313–322.PubMedCrossRefGoogle Scholar
  36. Evans, G. W., Grace, C. I., and Hahn, C., 1974. The effect of copper and cadmium on 65Zn absorption in zinc-deficient and zinc-supplemented, Bioinorganic Chem. 3:115–120.CrossRefGoogle Scholar
  37. Fehrs, M. S., Miller, W. J., Gentry, R. P., Neathery, M. W., Blackmon, D. M., and Heinmiller, S. R., 1981. Effect of high but nontoxic dietary intake of copper and selenium on metabolism in calves, J. Dairy Sci. 64:1700–1706.PubMedCrossRefGoogle Scholar
  38. Ferm, V. H., and Carpenter, S. J., 1968. The relationship of cadmium and zinc in experimental mammalian teratogenesis, Lab. Invest. 18:429–432.PubMedGoogle Scholar
  39. Francis, A. J., Duxbury, J. M., and Alexander, M., 1974. Evolution of dimethylselenide from soils, Appl. Microbiol. 28:248–250.PubMedGoogle Scholar
  40. Friberg, L., 1950. Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning, Acta Med. Scand. 138, Suppl. 240.Google Scholar
  41. Friberg, L. Piscator, M., Nordberg, G. F., and Kjellstrom, 1974. Cadmium in the Environment, 2nd ed., CRC Press Inc., Cleveland, Ohio, pp. 93–202.Google Scholar
  42. Gabbiani, G., 1966. Action of cadmium chloride on sensory ganglia, Experientia 22:261–264.PubMedCrossRefGoogle Scholar
  43. Gabbiani, G. Baic, D., and Deziel, C., 1967 Toxicity of cadmium for the central nervous system, Exp. Neurol. 18:154–160.PubMedCrossRefGoogle Scholar
  44. Ganther, H. E., 1968. Selenotrisulfides: Formation by the reaction of thiols with selenious acid, Biochemistry 7:2898–2905.PubMedCrossRefGoogle Scholar
  45. Ganther, H. E., and Baumann, C. A., 1962. Selenium metabolism. I. Effects of diet, arsenic and cadmium, J. Nutr. 77:210–216.PubMedGoogle Scholar
  46. Ganther, H. E., and Hsieh, H. S., 1974. Mechanisms for the conversion of selenite to selenides in mammalian tissues, in Trace Element Metabolism in Animals, Vol. 2., W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz (eds.), University Park Press, Baltimore, pp. 339–353.Google Scholar
  47. Ganther, H. E., Hafeman, D. G., Lawrence, R. A., Serfass, R. E., and Hoekstra, W. G., 1976. Selenium and glutathione peroxidase in health and disease: A review. In Trace Elements in Human Health and Disease, Vol. II, A. S. Prasad (ed.), Academic Press, New York, pp. 165–234.Google Scholar
  48. Gardiner, M. R., 1961. White muscle disease of sheep, J. Agric. West Aust. 2(4th series):497–501.Google Scholar
  49. Gardiner, M. R., 1966. Chronic selenium toxicity studies in sheep, Aust. Vet. J. 42:442–448.PubMedCrossRefGoogle Scholar
  50. Gardiner, M. R., 1969. Selenium in animal nutrition, Outlook in Agriculture 6:19–28.Google Scholar
  51. Gardiner, M. R., and Nairn, M. E., 1969. Studies on the effect of cobalt and selenium in clover disease of ewes, Aust. Vet. J. 45:215–222.PubMedGoogle Scholar
  52. Gardiner, M. R., and Nicol, H., 1971. Cobalt-selenium interactions in the nutrition of the rat, Austral. J. Exp. Biol. Med. Sci. 49:291–296.CrossRefGoogle Scholar
  53. Gasiewicz, T. A., and Smith, J. C., 1976. Interactions of cadmium and selenium in rat plasma in vivo and in vitro, Biochim. Biophys. Acta 428:113–122.PubMedCrossRefGoogle Scholar
  54. Gasiewicz, T. A., and Smith, J. C., 1978a. Properties of the cadmium and selenium complex formed in rat plasma in vivo and in vitro, Chem. Biol. Interact 23:171–183.PubMedCrossRefGoogle Scholar
  55. Gasiewicz, T. A., and Smith, J. C., 1978b. The metabolism of selenite by intact rat erythrocytes in vitro, Chem. Biol. Interact. 21:299–313.PubMedCrossRefGoogle Scholar
  56. Godwin, K. O., Partick, E. J., and Fuss, C. N., 1977. Adverse effects of copper, and to a lesser extent iron, when administered to selenium-deficient rats, In Trace Element Metabolism in Man and Animals, Vol. 3, M. Kirchgessner (ed), Freising-Weihenstephan, West Germany, pp. 185–187.Google Scholar
  57. Grant, C. A., 1961. Morphological and etiological studies of dietetic microangiopathy in pigs (“mulberry heart”), Acta Vet. Scand. 2(Suppl. 3): 1–107.Google Scholar
  58. Grice, H. C., Munro, I. C., Wiberg, G. S., and Heggtveit, H. A., 1969. The pathology of experimentally induced cobalt cardiomyopathies. A comparison with beer drinkers cardiomyopathy, Clin. Toxicol. 2:273–287.CrossRefGoogle Scholar
  59. Groth, D. H., Vignati, L., Lowry, L, Mackay, G., and Stokinger, H. E., 1973. Mutual antagonistic and synergistic effects of inorganic selenium and mercury salts in chronic experiments, in Trace Substances in Environmental Health. Vol. 6, D. D. Hemphill, (ed.), University of Missouri Press, Columbia, Missouri, pp. 187–189.Google Scholar
  60. Gunn, S. A., Gould, T. C., and Anderson, W. A. D., 1962. Interference with fecal excretion of Zn-65 by cadmium, Proc. Soc. Exp. Biol. Med. 111:559–562.PubMedGoogle Scholar
  61. Gunn, S. A., Gould, T. C., and Anderson, W. A. D., 1963. The selective injurious response of testicular and epididymal vessel’s cadmium and its prevention by zinc, Am. J. Path. 42:685–702.PubMedGoogle Scholar
  62. Gunn, S. A., Gould, T. C., and Anderson, W. A. D., 1968. Specificity in protection against lethality and testicular toxicity from cadmium, Proc. Soc. Exp. Biol. Med. 128:591–595.PubMedGoogle Scholar
  63. Halverson, A. W., and Palmer, I. S., 1975. The effect of substances which protect against selenium toxicity on selenium utilization by rats, Proc. S. Dak. Acad. Sci. 54:148–156.Google Scholar
  64. Harada, H., Ito, L., Ebato, K., Takeuchi, M., Amemiya, T., Yamanobe, H., Suzuku, S., and Totani, T., 1975. Effect of selenium on the toxicity of methylmercury (II). Methylmercury and total mercury concentration of organs in rats administered methylmercury, selenium, and vitamin E, Ann. Rep. Tokyo Metr. Res. Lab. P. H. 26:123–128.Google Scholar
  65. Harris, S. B., Wilson, J. B., and Printz, R. H., 1972. Embryotoxicity of methylmercuric chloride in golden hamsters, Teratology 6:139–142.PubMedCrossRefGoogle Scholar
  66. Hill, C. H., 1975. Interrelationships of selenium with other trace elements, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:2096–2100.Google Scholar
  67. Hill, C. H., and Matrone, G., 1970. Chemical parameters in the study of in vivo and in vitro interactions of transition elements, Fed. Proc. Fed. Am. Soc. Exp. Biol. 29:1474–1481.Google Scholar
  68. Hoekstra, W. G., 1975. Biochemical function of selenium and its relation to vitamin E, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:2083–2089.Google Scholar
  69. Hollo, Z. M., and Slatarov, S., 1960. The prevention of thallium death by selenate, Naturwissenschaften 47:87.CrossRefGoogle Scholar
  70. Holmburg, R. E., and Ferm, V. R., 1969. Interrelationships of selenium, cadmium, arsenic, in mammalian teratogenesis, Arch. Environ. Health 18:873–877.Google Scholar
  71. Hove, E. L., 1955. Anti-vitamin E stress factors as related to lipid peroxides, Am. J. Clin. Nutr. 3:328–336.PubMedGoogle Scholar
  72. Hsieh, H. S., and Ganther, H. E., 1975. Acid-volatile selenium formation catalyzed by glutathione reductase, Biochemistry 14:1632–1636.PubMedCrossRefGoogle Scholar
  73. Hsu, F. S., Krook, L., Pond, W. G., and Duncan, J. R., 1975. Interactions of dietary calcium with toxic levels of lead and zinc in pigs, J. Nutr. 105:112–118.Google Scholar
  74. Imura, N., and Naganuma, A., 1978. Interaction of inorganic mercury and selenite in rabbit blood after intravenous administration, J. Pharm. Dyn. 1:67–73.CrossRefGoogle Scholar
  75. Jenkins, K. J., and Kidiroglou, M., 1972. Comparative metabolism of 75Se-selenite, 75Seselenate and 75Se-selenomethionine in bovine erythrocytes, Can. J. Physiol. Pharmacol. 50:927–935.PubMedCrossRefGoogle Scholar
  76. Jensen, L. S., 1974. Interactions of silver and copper with selenium in chicks, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33:694.Google Scholar
  77. Jensen, L. S., 1975. Modification of a selenium toxicity in chicks by dietary silver and copper, J. Nutr. 105:769–775.PubMedGoogle Scholar
  78. Jensen, L. S., Peterson, R. P., and Falen, L., 1974. Inducement of enlarged hearts and muscular dystrophy in turkey poults with dietary silver, Poult. Sci. 53:57–64.PubMedCrossRefGoogle Scholar
  79. Kagi, J. H. R., and Vallee, B. L., 1961. Metallothionein: a cadmium-and zinc-binding protein from equine renal cortex. II. Physicochemical properties, J. Biol. Chem. 236:2435–2442.PubMedGoogle Scholar
  80. Kamstra, L. D., and Bonhorst, C. W., 1953. Effect of arsenic on the expiration of volatile selenium compounds by rats, Proc. S. Dak. Acad. Sci. 32:72–74.Google Scholar
  81. Kari, T., and Kauranen, 1978. Mercury and selenium content of seals from fresh and brackish waters in Finland, Bull. Environ. Contam. Toxicol. 19:273–280.PubMedCrossRefGoogle Scholar
  82. Kemmerer, A. R., Elvehjem, C. A., and Hart, E. B., 1931. Studies on the relation of manganese to the nutrition of the mouse. J. Biol. Chem. 92:623–630.Google Scholar
  83. Khera, K. S., 1973. Teratogenic effects of methylmercury in the cat: Note on the use of this species as a model for teratogenicity studies, Teratology 8:293–304.PubMedCrossRefGoogle Scholar
  84. Klug, H. L., Lampson, G. P., and Moxon, A. L., 1950a. The distribution of selenium and arsenic in the body tissues of rats fed selenium, arsenic, or selenium plus arsenic, Proc. S. Dak. Acad. Sci. 29:57–65.Google Scholar
  85. Klug, H. L., Moxon, A. L., and Petersen, D. F., and Van Potter, R., 1950b. The in vivo inhibition of succinic dehydrogenase by selenium and its release by arsenic, Arch. Biochem. Biophys. 28:253–259.Google Scholar
  86. Koeman, J. H., van de Ven, W. S. M., de Goedij, J. J. M., Tjioe, P. S., and van Haaften, J. L., 1975. Mercury and selenium in marine mammals and birds, Sci. Total. Envir. 3:279–287.CrossRefGoogle Scholar
  87. Krista, I., Carlson, C. W., and Olson, O. E., 1961. Effect of arsenic on selenium deposition in chicken eggs, Poult. Sci. 40:1365–1367.CrossRefGoogle Scholar
  88. Latshaw, J. D., 1975. Natural and selenite selenium in the hen and egg, J. Nutr. 105:32–37.Google Scholar
  89. Leach, R. M., Muenster, A., and Wein, E. M., 1969. Studies on the role of manganese in bone formation. II. Effect upon chondroitin sulfate synthesis in chick epiphyseal cartilage, Arch. Biochem. 133:22–28.PubMedCrossRefGoogle Scholar
  90. Lee, H. J., and Jones, G. B., 1976. Interactions of selenium, cadmium and copper in sheep, Aust. J. Agric. Res. 27:447–452.CrossRefGoogle Scholar
  91. Lee, M., Chan, K. K. S., Sairenji, E., and Niikuni, T., 1979. Effect of sodium selenite on methylmercury-induced cleft palate in the mouse, Environ. Res. 19:39–48.PubMedCrossRefGoogle Scholar
  92. Levander, O. A., 1977. Metabolic interrelationships between arsenic and selenium, Environ. Hlth. Perspect. 19:159–164.CrossRefGoogle Scholar
  93. Levander, O. A., and Argrett, L. C., 1969. Effects of arsenic, mercury, thallium, and lead on selenium metabolism in rats, Toxicol. Appl. Pharmacol. 14:308–314.PubMedCrossRefGoogle Scholar
  94. Levander, O. A., and Baumann, C. A., 1966a. Selenium metabolism, V. Studies on the distribution of selenium in rats given arsenic, Toxicol. Appl. Pharmacol. 9:98–105.PubMedCrossRefGoogle Scholar
  95. Levander, O. A., and Baumann, C. A., 1966b. Selenium metabolism. VI. Effect of arsenic on the excretion of selenium in the bile, Toxicol. Appl. Pharmacol. 9:106–115.PubMedCrossRefGoogle Scholar
  96. Levander, O. A., Morris, V. C. and Higgs, D. J., 1973a. Acceleration of thiol-induced swelling of rat liver mitochondria by selenium, Biochemistry 12:4586–4590.PubMedCrossRefGoogle Scholar
  97. Levander, O. A., Morris, V. C., and Higgs, D. J., 1973b. Selenium as a catalyst for the reduction of cytochrome c by glutathione, Biochemistry 12:4591–4595.PubMedCrossRefGoogle Scholar
  98. Levander, O. A., Morris, V. C., Higgs, D. J., and Ferretti, R. J., 1975. Lead poisoning in vitamin E-deficient rats, J. Nutr. 105:1481–1485.PubMedGoogle Scholar
  99. Levander, O. A., Morris, V. C., and Ferretti, R. J., 1977b. Filterability of erythrocytes from vitamin E-deficient lead-poisoned rats, J. Nutr. 107:363–372.PubMedGoogle Scholar
  100. Levander, O. A., Ferretti, R. J., and Morris, V. C., 1977a. Osmotic and peroxidative fragilities of erythrocytes from vitamin E-deficient lead-poisoned rats, J. Nutr. 107:373–377.PubMedGoogle Scholar
  101. Levander, O. E., Morris, V. C., and Ferretti, R. J., 1977c. Comparative effects of selenium and vitamin E lead-poisoned rats, J. Nutr. 107:378–382.PubMedGoogle Scholar
  102. Lilas, R., and Fischbein, A., 1976. Chelation therapy in workers exposed to lead, J. Am. Med. Assoc. 235:2823–2824.CrossRefGoogle Scholar
  103. Lindquist, R. R., 1968. Studies on the pathogenesis of hepatolenticular degeneration. III. The effect of copper on rat liver lysosomes, Am. J. Path. 53:903–927.PubMedGoogle Scholar
  104. Lynch, F. P., Smith, D. F., Fisher, M., Pike, T. L., and Weinland, B. T., 1976. Physiological responses of calves to cadmium and lead, J. Anim. Sci. 42:410–421.PubMedGoogle Scholar
  105. Lyons, M., and Insko, W., 1937. Chondrodystrophy in the chick embryo produced by manganese deficiency in the diet of the hen, Ky. Agr. Exp. Sta. Lexington Bull. 371:61–75.Google Scholar
  106. Magat, W., and Sell, J. L., 1979. Distribution of mercury and selenium in egg components and egg-white proteins, Proc. Soc. Exp. Biol. Med. 161:458–463.PubMedGoogle Scholar
  107. Mason, K. E., and Young, J. O., 1967. Effectiveness of selenium and zinc in protecting against cadmium-induced vascular lesions in the testis and epididymis of the rat, Acta Path. Microbiol. Scand. 63:513–521.Google Scholar
  108. Mason, K. E., Brown, J. A., Young, J. O., and Nesbit, R. I., 1964. Cadmium-induced injury of the rat testis, Anat. Rec. 149:135–148.PubMedCrossRefGoogle Scholar
  109. Matrone, G., 1974. Chemical parameters in trace-element antagonisms, in Trace Element Metabolism In Animals, Vol. 2, W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz (eds.), University Park Press, Baltimore, pp. 91–102.Google Scholar
  110. McConnell, K. P., 1942. Respiratory excretion of selenium studied with the radioactive isotope, J. Biol. Chem. 145:55–60.Google Scholar
  111. McConnell, K. P., and Portman, O. W., 1952a. Excretion of dimethyl selenide by the rat, J. Biol. Chem. 195:277–282.PubMedGoogle Scholar
  112. McConnell, K. P., and Portman, O. W., 1952b. Toxicity of dimethyl selenide in rat and mouse, Proc. Soc. Exp. Biol. Med. 79:230–231.PubMedGoogle Scholar
  113. McGuire, S. O., Fehrs, M. S., Miller, W. J., Gentry, R. P., Neathery, M. W., Blackmon, D. M., Heinmiller, S. R., and Lassiter, J. W., 1981. Metabolism of selenium and copper in calves fed low and high copper and selenium diets, Fed. Proc. Fed. Am. Soc. Exp. Biol. 40:868.Google Scholar
  114. Means, J. R., Carlson, G. P., and Schnell, R. C., 1979. Studies on the mechanism of cadmium-induced inhibition of the hepatic microsomal mono-oxgenase of the male rat, Toxicol. Appl. Pharmacol. 48:293–304.PubMedCrossRefGoogle Scholar
  115. Megel, H., and Karlog, O., 1980. Studies on the interaction and distribution of selenite, mercuric, methoxyethyl mercuric and methyl mercuric chloride in rats. II. Analyses of the soluble proteins and the precipitates of liver and kidney homogenates, Acta Pharmacol. Toxicol. 46:25–31.CrossRefGoogle Scholar
  116. Merali, Z., and Singhal, R. L., 1975. Protective effect of selenium on certain hepatotoxic and pancreotoxic manifestations of sub-acute cadmium administration, J. Pharmacol. Exp. Ther. 195:58–66.PubMedGoogle Scholar
  117. Merali, Z., and Singhal, R. L., 1976. Prevention by zinc of cadmium-induced alterations in pancreatic and hepatic functions, Br. J. Pharmacol. 57:573–579.PubMedCrossRefGoogle Scholar
  118. Metz, E. N., 1969. Mechanism of hemolysis by excess copper, Clin. Res. 17:32.Google Scholar
  119. Moxon, A. L., and Wilson, W. O., 1944. Selenium-arsenic antagonism in poultry, Poult. Sci. 23:149–151.CrossRefGoogle Scholar
  120. Moxon, A. L., and Rhian, M. A., Anderson, H. D., and Olson, O. E., 1944. Growth of steers on seleniferous range, J. Anim. Sci. 3:299–309.Google Scholar
  121. Muth, O. H., Whanger, P. D., Weswig, P. H., and Oldfield, J. E., 1971. Occurrence of myopathy in lambs of ewes fed added arsenic in a selenium-deficient ration, Am. J. Vet. Res. 32:1621–1623.PubMedGoogle Scholar
  122. Naganuma, A., and Imura, N., 1980. Bis(methylmercuric) selenide as a reaction product from methylmercury and selenite in rabbit blood, Res. Commun. Chem. Pathol. Pharmacol. 27:163–173.PubMedGoogle Scholar
  123. Naganuma, A., Kojima, Y., and Imura, N., 1980. Interaction of methylmercury and selenium in mouse: Formation and decomposition of bis(methylmercuric) selenide, Res. Commun. Chem. Pathol. Pharmacol. 30:301–316.PubMedGoogle Scholar
  124. Nobunaga, T., Satoh, H., and Suzuki, T., 1979. Effects of sodium selenite on methylmercury embryotoxicity and teratogenicity in mice, Toxicology Appl. Pharmacol. 47:79–88.CrossRefGoogle Scholar
  125. Nogawawa, K., Ishizaki, A., Fukushima, M., Shibata, I., and Hagina, N., 1975. Studies on the women with acquired Fanconi syndrome observed in Ichi river basin polluted by cadmium, Environ. Res. 10:280–307.CrossRefGoogle Scholar
  126. Obermeyer, B. D., Palmer, I. S., Olson, O. E., and Halverson, A. W., 1971. Toxicity of trimethylselenonium chloride in the rat with and without arsenite, Toxicol. Appl. Pharmacol. 20:135–146.PubMedCrossRefGoogle Scholar
  127. Olson, O. E., 1960. Selenium and the organic arsenicals, Feed Age 10:49–50.Google Scholar
  128. Olson, O. E., Schulte, B. M., Whitehead, E. I., and Halverson, A. W., 1963. Selenium toxicity. Effect of arsenic on selenium metabolism in rats, J. Agr. Food Chem. 11:531–534.CrossRefGoogle Scholar
  129. Orent, E. R., and McCollum, E. V., 1931. Effects of deprivation of manganese in the rat, J. Biol. Chem. 92:651–678.Google Scholar
  130. Palmer, I. S., and Bonhorst, C. W., 1957. Modification of selenite metabolism by arsenite, J. Agr. Food Chem. 5:928–930.CrossRefGoogle Scholar
  131. Palmer, I. S., Arnold, R. L., and Carlson, C. W., 1973. Toxicity of various selenium derivatives to chick embryos, Poult. Sci., 52:1841–1846.PubMedCrossRefGoogle Scholar
  132. Parizek, J., 1957. The destructive effect of cadmium ion on testicular tissue and its prevention by zinc, J. Endocrinol. 15:56–63.PubMedCrossRefGoogle Scholar
  133. Parizek, J., 1964. Vascular changes at sites of oestrogen biosynthesis by parenteral injection of cadmium salts; the destruction of placenta by cadmium salts, J. Reprod. Fertil. 7:263–265.PubMedCrossRefGoogle Scholar
  134. Parizek, J., and Ostadalova, I., 1967. The protective effect of small amounts of selenite in sublimate intoxification, Experientia 23:142–143.PubMedCrossRefGoogle Scholar
  135. Parizek, J., Ostadalova, I., Benes, I., and Babicky, A., 1968a. Pregnancy and trace elements: the protective effects of compounds of an essential trace element-selenium-against the peculiar toxic effects of cadmium during pregnancy, J. Reprod. Fertil. 16:507–509.PubMedCrossRefGoogle Scholar
  136. Parizek, J., Ostadalova, I., Benes, I., and Pitha, J., 1968b. The effect of a subcutaneous injection of cadmium salts on the ovaries of adult rats in persistant oestrus, J. Reprod. Fert. 17:559–562, 1968.CrossRefGoogle Scholar
  137. Parizek, J., Benes, I., Kalouskova, J., Babicky, A., and Lener, J., 1969a. Metabolic interrelationships of trace elements. Effects of zinc salts on the survival of rats intoxicated with cadmium, Physiol. Bohemoslov. 18:89–93.PubMedGoogle Scholar
  138. Parizek, J., Babicky, A., Ostadalova, I., Kalouskova, J., and Pavlik, L. 1969. The effect of selenium compounds on the cross-placental passage of 203Hg, in Radiation Biology of the Fetal and Juvenile Mammal, M. R. Sikov and D. D. Mahlum (ed.), USAEC, Oak Ridge, Tennessee, pp. 137–170.Google Scholar
  139. Parizek, J., Ostadalova, I., Kalouskova, J., Babicky, A., and Benes, J., 1971. The detoxifying effects of selenium. Interrelations between compounds of selenium and certain metals, in Newer Trace Elements in Nutrition, W. Mertz and W. E. Cornatzer (eds.), Marcel Dekker, New York, pp. 85–122.Google Scholar
  140. Petering, H. G., 1974. The effect of cadmium and lead on copper and zinc metabolism, in Trace Element Metabolism in Animals, Vol. 2, W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. E. Mertz (eds.), University Park Press, Baltimore, pp. 311–325.Google Scholar
  141. Petering, H. G., Johnson, M. A., and Stemmer, K. L., 1971. Studies on zinc metabolism in the rat. 1. Dose-response effects of cadmium, Arch. Envir. Hlth. 23:93–101.Google Scholar
  142. Piotrowski, J. K., Bern, E. M., and Werner, A., 1977. Cadmium and mercury binding to metallothionein as influenced by selenium, Biochem, Pharmacol. 26:2191–2192.CrossRefGoogle Scholar
  143. Potter, S. D., and Matrone, G., 1977. A tissue culture model for mercury-selenium interactions, Toxicol. Appl. Pharmacol. 40:201–215.PubMedCrossRefGoogle Scholar
  144. Powell, G. W., Miller, W. J., Morton, J. D., and Clifton, C. M., 1964. Influence of dietary cadmium level and supplemental zinc on cadmium toxicity in the bovine, J. Nutr. 84:205–214.PubMedGoogle Scholar
  145. Rafter, G. W., 1980. Copper inhibition of glutathione reductase and its reversal by thiol reagents, Fed. Proc. Fed. Am. Soc. Exp. 39:1772.Google Scholar
  146. Ramstoeck, E. R., Hoekstra, W. G., and Ganther, H. E., 1980. Trialkyllead metabolism and lipid peroxidation in vivo in vitamin E-and selenium-deficient rats, as measured by ethane production, Toxicol. Appl Pharmacol. 54:251–257.Google Scholar
  147. Rastogi, S. C., Clausen, J., and Srivastava, K. C., 1976. Selenium and lead: Mutual detoxifying effects, Toxicology 6:377–388.PubMedCrossRefGoogle Scholar
  148. Reddy, K. A., Omaye, S. T., Hasegawa, G. K., and Cross, C. E., 1978. Enhanced lung toxicity of intratracheally instilled cadmium chloride in selenium-deficient rats, Toxicol. Appl. Pharm. 43:249–257.CrossRefGoogle Scholar
  149. Rhian, M., and Moxon, A. L., 1943. Chronic selenium poisoning in dogs and its prevention by arsenic, J. Pharmacol. Exp. Therap. 78:249–264.Google Scholar
  150. Rice, D. P., Murthy, L., Menden, E., and Petering, H. G. 1973. The impact of low level cadmium feeding on blood chemicals in male Sprague-Dawley rats, in Trace Substances in Environmental Health, Vol. VII, D. Hemphill (ed), University of Missouri Press, Columbia, Missouri, pp. 305–311.Google Scholar
  151. Richards, M. P., and Cousins, R. J., 1976. Metallothionein and its relationshp to the metabolism of dietary zinc in rats, J. Nutr. 106:1591–1599.PubMedGoogle Scholar
  152. Richards, M. P., and Cousins, R. J., 1977. Isolation of an intestinal metallothionein induced by parenteral zinc, Biochem. Biophys. Res. Commun. 75:286–294.PubMedCrossRefGoogle Scholar
  153. Roberts, K. R., Miller, W. J., Stake, P. E., Gentry, R. P., and Neathery, M. W., 1973. High dietary cadmium and zinc absorption and metabolism in calves fed for comparable nitrogen balance, Proc. Soc. Exp. Biol. Med. 144:907–909.Google Scholar
  154. Rusiecki, W., and Brezezinski, J., 1966. Influence of sodium selenate on acute thallium poisonings, Acta Pol. Pharmacol. 23:69–74.Google Scholar
  155. Sandholm, M., 1973a. The initial fate of a trace amount of intravenously administered selenite, Acta Pharmacol. Toxicol. 33:1–5.CrossRefGoogle Scholar
  156. Schnell, R. C., 1978. Cadmium-induced alteration of drug action, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37:28–34.Google Scholar
  157. Schroeder, H. A., 1965. Cadmium as a factor in hypertension, J. Chronic Dis. 18:647–656.CrossRefGoogle Scholar
  158. Schroeder, H. A., Balassa, J. J., and Vinton, W. M. Jr., 1964. Chromium, lead, cadmium, nickel and titanium in mice: Effect on mortality, tumors and tissue levels, J. Nutr. 83:239–250.PubMedGoogle Scholar
  159. Schultz, J., and Lewis, H. B., 1940. The excretion of volatile selenium compounds after the administration of sodium selenite to white rats, J. Biol. Chem. 133:199–207.Google Scholar
  160. Schwarz, K., and Foltz, C. M., 1957. Selenium as a integral part of factor 3 against necrotic liver degeneration, J. Am. Chem. Soc. 79:3292–3293.CrossRefGoogle Scholar
  161. Scott, M. L., Olson, G., Krook, L., and Brown, W. R., 1967. Selenium-responsive myopathies of myocardium and of smooth muscle in the young poult, J. Nutr. 91: 573–583.PubMedGoogle Scholar
  162. Scrutton, M. C., Utter, M. F., and Mildvan, A. S., 1966. Pyruvate carboxylase, VI. The presence of tightly bound manganese, J. Biol. Chem. 241:3480–3487.PubMedGoogle Scholar
  163. Seidell, A., 1952. Solubilities, Inorganic and Metal-Organic Compounds, Vol. 1, 44th ed., American Chemical Society, Washington, D.C.Google Scholar
  164. Sell, J. L., Guenter, W., and Sifri, M., 1974. Distribution of mercury among components of eggs following the administration of methylmercuric chloride to chickens, J. Agric. Food Chem. 22:248–251.PubMedCrossRefGoogle Scholar
  165. Shaver, S. L., and Mason, K. E., 1951. Impaired tolerance to silver in vitamin E deficient rats, Anat. Rec. 109:382–388.Google Scholar
  166. Shull, L. R., and Cheeke, P. R., 1973. Antiselenium activity of tri-o-cresyl phosphate in rats and Japanese quail, J. Nutr. 103:560–568.PubMedGoogle Scholar
  167. Sivertsen, T., Karlsen, J. T., Norheim, G., and Froslie, A., 1978. Concentration of selenium in liver in relation to copper level in normal and copper-poisoned sheep, Acta Vet. Scand. 19:472–474.Google Scholar
  168. Skilleter, D. N., 1975. Decrease in mitochondrial substrate uptake caused by trialkyltin and trialkyllead compounds in chloride media and its relevance to inhibition of oxidative phosphorylation, Biochem. J. 146:465–471.PubMedGoogle Scholar
  169. Snaith, S. M., and Levvy, G. A., 1969. Purification and properties of α-D-mannosidase from rat epididymis, Biochem. J. 114:25–33.PubMedGoogle Scholar
  170. Snell, K., Ashby, S. L., and Barton, S. J., 1977. Distribution of perinatal carbohydrate metabolism in rats exposed to methylmercury in utero, Toxicology 8:277–283.PubMedCrossRefGoogle Scholar
  171. Srivastava, S. K., and Beuter, E., 1969. The transport of oxidized glutathione from the erythrocytes of various species in the presence of Chromate, Biochem. J. 114:833–837.PubMedGoogle Scholar
  172. Stillings, B. R., Lagally, H., Bauersfeld, P., and Soares, J., 1974. Effect of cystine, selenium and fish protein on the toxicity and metabolism of methylmercury in rats, Toxicol. Appl. Pharmacol. 30:243–254.CrossRefGoogle Scholar
  173. Stonard, M. D., and Webb, M., 1976. Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat, Chem. Biol. Interact. 15:349–363.PubMedCrossRefGoogle Scholar
  174. Stone, C. L., and Soares, J. H., Jr., 1976. The effect of dietary selenium on lead toxicity in the Japanese quail, Poult. Sci. 55:341–349.PubMedCrossRefGoogle Scholar
  175. Stowe, H. D., 1980. Effects of copper pretreatment upon the toxicity of selenium in ponies, Am. J. Vet. Res. 41:1925–1928.PubMedGoogle Scholar
  176. Su, M. Q., and Okita, G. T., 1976. Embryocidal and teratogenic effects of methylmercury in mice. Toxicol. Appl. Pharmacol. 38:207–216.PubMedCrossRefGoogle Scholar
  177. Supplee, W. C., 1963. Antagonistic relationship between dietary cadmium and zinc, Science 139:119–120.PubMedCrossRefGoogle Scholar
  178. Szymanska, J. A., Mogilnicka, E. M., and Kaszper, B. W., 1977. Binding of bismuth in the kidneys of the rat: The role of metallothionein-like proteins, Biochem. Pharmacol. 26:257–258.PubMedCrossRefGoogle Scholar
  179. Szymanska, J. A., Zychowicz, M., Zelazowski, A. J., and Piotrowski, J. K., 1978. Effect of selenium on the organ distribution and binding of bismuth in rat tissues, Arch. Toxicol. 40:131–141.PubMedCrossRefGoogle Scholar
  180. Tamura, Y., Maki, T., Yamada, H., Shimamura, Y., Ochiai, S., Nishigaki, S., and Kimura, Y., 1975. Studies on the behaviour of accumulation of trace elements in various tissues of tuna, Ann. Rep. Tokyo Metro. Res. Lab. P.H. 26:200–204.Google Scholar
  181. Thomson, G. G., and Lawson, B. M., 1970. Copper and selenium interaction in sheep, N.Z. Vet. J. 18:79–82.PubMedCrossRefGoogle Scholar
  182. Ukita, T., Takeda, Y., Sato, Y., and Takahashi, T., 1967. Distribution of 203Hg Labeled mercury compounds in adult and pregnant mice determined by whole-body autoradiography, Radioisotopes 16:439.CrossRefGoogle Scholar
  183. Underwood, E. J., 1971. Manganese, in Trace Elements in Human and Animal Nutrition, 3rd ed., E. J. Underwood (ed.), Academic Press, New York, pp. 177–207.Google Scholar
  184. Underwood, E. J., 1977. Trace Elements in Human and Animal Nutrition, 4th ed., Academic Press, New York.Google Scholar
  185. Van Vleet, J. F., Boon, G. D., and Ferrans, V. J., 1981a. Induction of lesions of selenium-vitamin E deficiency in ducklings fed silver, copper, cobalt, tellurium, cadmium or zinc: Protection by selenium or vitamin E supplements, Am. J. Vet. Res. 42:1206–1217.PubMedGoogle Scholar
  186. Van Vleet, J. F., Boon, G. D., and Ferrans, V. J., 1981b. Induction of lesions of selenium-vitamin E deficiency in weanling swine fed silver, cobalt, tellurium, zinc, cadmium and vanadium, Am. J. Vet. Res. 42:789–799.PubMedGoogle Scholar
  187. Vigliani, E. C., 1969, The biopathology of cadmium, Am. Ind. Hyg. Assoc. J. 30:329–340.PubMedGoogle Scholar
  188. Wada, O., Yamaguchi, N., Ono, T., Nagashashi, M., and Morimura, T., 1976. Inhibitory effect of mercury on kidney glutathione peroxidase and its prevention by selenium, Environ. Res. 12:75–80.CrossRefGoogle Scholar
  189. Wagner, P. A., Hoekstra, W. G., and Ganther, H. E., 1975. Alleviation of silver toxicity by selenite in the rat in relation to tissue glutathione peroxidase. Proc. S oc. Exp. Biol. Med. 148:1106–1110.Google Scholar
  190. Wahlstrom, R. C., Kamstra, L. D., and Olson, O. E., 1955. The effect of arsanilic acid and 3-nitro-4-hydroxyphenylarsonic acid on selenium poisoning in the pig, J. Anim. Sci. 14:105–110.Google Scholar
  191. Waites, G. M. H., and Setchell, B. P., 1966. Changes in blood flow and vascular permeability of the testis, epididymis and accessory reproductive organs of the rat after administration of cadmium chloride, J. Endocr. 34:329–342.PubMedCrossRefGoogle Scholar
  192. Walker, G. W. R., and Bradley, A. M., 1969. Interacting effects of sodium monohydrogenarsenate and selenocystine on crossing over in Drosophilia melanogaster, Can. J. Genet. Cytol. 11:677–688.Google Scholar
  193. Washko, P. W., and Cousins, R. J., 1977. Role of dietary calcium and calcium-binding protein in cadmium toxicity in rats, J. Nutr. 107:920–928.PubMedGoogle Scholar
  194. Webb, M., 1975. Cadmium, Br. Med. Bull. 31:246–250.PubMedGoogle Scholar
  195. Webster, W. S., 1978. Cadmium-induced fetal growth retardation in the mouse, Arch. Environ. Health, 33:36–42.PubMedGoogle Scholar
  196. Weser, U., and Koolman, J., 1970. Reactivity of some transition metals on nuclear protein biosynthesis in rat liver, Experientia 26:246–247.PubMedCrossRefGoogle Scholar
  197. Whanger, P. D., 1976. Selenium versus metal toxicity in animals, in Industrial Health Foundation Symposium on Selenium-Tellurium in the Environment. Industrial Health Foundation, Pittsburgh, pp. 234–240.Google Scholar
  198. Whanger, P. D., Weswig, P. H., Schmitz, J. A., and Oldfield, J. E., 1976. Effects of selenium, cadmium, mercury, tellurium, arsenic, silver, and cobalt on white muscle disease in lambs and effect of dietary forms of arsenic on its accumulation in tissues, Nutr. Repts. Int. 14:63–72.Google Scholar
  199. Whanger, P. D., and Weswig, P. H., 1978. Influence of 19 elements on development of liver necrosis in selenium and vitamin E deficient rats, Nutr. Rep. Int. 18:421–428.Google Scholar
  200. Wiberg, J. S., and Neuman, W. F., 1957. The binding of bivalent metals by deoxyribonucleic and ribonucleic acids, Arch. Biochem. 72:66–83.PubMedCrossRefGoogle Scholar
  201. Wilgus, H. S., Norris, L. C., and Heuser, G. F., 1936. The role of certain inorganic elements in the cause and prevention of perosis, Science 84:252–253.PubMedCrossRefGoogle Scholar
  202. Wilson, R. H., de Eds, F., and Cox, A. J., 1941. Effects of continued cadmium feeding, J. Pharmacol. Exp. Ther. 71:222–235.Google Scholar
  203. Windell, C. C., and Tata, J. R., 1966. Studies on the stimulation by ammonium sulfate of the DNA-dependent RNA polymerase of isolated rat liver nuclei, Biochim. Biophys. Acta 123:478–492.CrossRefGoogle Scholar
  204. Witting, L. A., and Horwitt, M. K., 1964. Effects of dietary selenium, methionine, fat level and tocopherol on rat growth, J. Nutr. 84:351–360.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Raymond J. Shamberger
    • 1
  1. 1.The Cleveland Clinic FoundationClevelandUSA

Personalised recommendations