Advertisement

Comparative Metabolism and Biochemistry of Selenium and Sulfur

  • Raymond J. Shamberger
Part of the Biochemistry of the Elements book series (BOTE, volume 2)

Abstract

The chemical and physical characteristics of selenium and sulfur are similar (Table 4-1). Selenium and sulfur have similar configurations of electrons in their outermost valence shells, even though the third shell of selenium is completely filled. The bond energies, ionization potentials, the sizes of the atoms whether they are in the covalent or ionic state, the electronegativities, and the polarizabilities are essentially identical.

Keywords

Sodium Selenite Selenium Compound Elemental Selenium Sodium Selenate Selenious Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuff, R. V., and Smith, J. T., 1981. Selenium absorption and dietary inorganic sulfate status in the rat, Fed. Proc. Fed. Am. Soc. Exp. Biol. 40:902.Google Scholar
  2. Adams, C. A., and Rinne, R. W., 1969. Influence of age and sulfur metabolism on ATP sulfurylase activity in the soybean and a survey of selected species, Plant Physiol. 44:1241–1246.PubMedCrossRefGoogle Scholar
  3. Akagi, J. M., and Campbell, L. L., 1962. Studies on thermophilic sulfate-reducing bacteria. III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulforibrio de sulfuric ans, J. Bacteriol. 84:1194–1201.PubMedGoogle Scholar
  4. Asada, K., Tamura, G., and Bandurski, R. S., 1969. Methyl viologen-linked sulfite reductase from spinach leaves, J. Biol. Chem. 244:4904–4915.PubMedGoogle Scholar
  5. Asher, C., Evans, C., and Johnson, C. M., 1967. Collection and partial characterization of volatile selenium compounds by Medicago sativa L., Aust. J. Biol. Sci. 20:737–748.Google Scholar
  6. Bailey, S., Bazinet, M., Driscoll, J., and McCarthy, A., 1961. The volatile sulfur components of cabbage, J. Food Sci. 26:163–170.CrossRefGoogle Scholar
  7. Beath, O., and Eppson, H., 1947. The form of selenium in some vegetation, WHO Agr. Exp. Sta. Bul., No. 278.Google Scholar
  8. Bird, M. L., Challenger, F., Charlton, P. T., and Smith, J. O., 1948. Studies on biological methylation. XL The action of molds on inorganic and organic compounds of arsenic, Biochem. J. 43:78–83.Google Scholar
  9. Bonhorst, C. W., and Palmer, I. S., 1957. Metabolic interactions of selenate, sulfate and phosphate, J. Agr. Food Chem. 5:931–933.CrossRefGoogle Scholar
  10. Bremer, J., and Natori, Y., 1960. Behavior of some selenium compounds in transmethylation, Biochim. Biophys. Acta 44:367–370.CrossRefGoogle Scholar
  11. Byard, J. L., 1969. Trimethyl selenide, a urinary metabolite of selenite, Arch. Biochem. Biophys. 130:556–560.PubMedCrossRefGoogle Scholar
  12. Byard, J. L., and Baumann, C. A., 1967. Selenium metabolites in the urine of rats given a subacute dose of selenite, Fed. Proc. Fed. Am. Soc. Exp. Biol. 26:476.Google Scholar
  13. Campo, R. D., Wengert, Jr., P. A., Tourtellotte, C. D., and Kirsch, M. A., 1966. A comparative study of the fixation of 75Se and 35S onto protein-polysaccharides of bovine costal cartilage, Biochim. Biophys. Acta 124:101–108.PubMedCrossRefGoogle Scholar
  14. Campo, R. D., Tourtellotte, C. D., and Ledrick, J. W., 1967. Selenium-75: An autoradiographic study of its disposition in cartilage and bone, Proc. Soc. Exp. Bio. Med 125:512–515.Google Scholar
  15. Cannella, C., Pecci, L., Finazzi Agro, A., Federici, G., Pensa, B., and Cavallini, D., 1975. Effect of sulfur binding on rhodanese fluorescence, Eur. J. Biochem. 55:285–289.PubMedCrossRefGoogle Scholar
  16. Caygill, C. P. J., and Diplock, A. T., 1973. The dependence on dietary selenium and vitamin E of oxidant-labile liver microsomal non-haem iron, FEBS Lett 33:172–176.PubMedCrossRefGoogle Scholar
  17. Caygill, C. P. J., Lucy, J. A., and Diplock, A. T., 1971. The effect of vitamin E on the intracellular distribution of the different oxidation states of selenium in rat liver, Biochem. J. 125:407–416.PubMedGoogle Scholar
  18. Caygill, C. P. J., Diplock, A. T., and Jeffery, E. H., 1973. Studies on selenium incorporation into, the electron-transfer function of, liver microsomal fractions from normal and vitamin E-deficient rats given phenobarbitone, Biochem. J., 136:851–858.PubMedGoogle Scholar
  19. Challenger, F., 1955. Biological methylation, Q. Rev. Chem. Soc. 9:255–286.CrossRefGoogle Scholar
  20. Challenger, F., 1951. Biological methylation, Adv. Enzymol. 12:429–491.Google Scholar
  21. Challenger, F., and North, H. E., 1934. The production of organometalloidal compounds by microorganisms. II. Dimethylselenide, J. Chem. Soc. London, 68–71.Google Scholar
  22. Challenger, F., and Charlton, P. T., 1947. Studies of biological methylation. X. The fission of the mono-and disulfide links by molds, J. Chem. Soc. London, 424–429.Google Scholar
  23. Chen, D. M., Nigam, S. N., and McConnell, W. B., 1970. Biosynthesis of Se-methylselen-ocysteine and S-methylcysteine in Astragalus bisulcatus, Can. J. Biochem. 48:1278–1283.CrossRefGoogle Scholar
  24. Chernick, S. S., Moe, J. G., Rodnan, G. P., and Schwarz, K., 1955. A metabolic lesion in dietary necrotic liver degeneration, J. Biol. Chem. 217:829–843.PubMedGoogle Scholar
  25. Chow, C. M., Nigam, S. N., and McConnell, W. B., 1971. Biosynthesis of Se-methylse-lenocysteine and S-methylcysteine in Astragalus Bisulcatus: Effect of selenium and sulfur concentrations in the growth medium, Phytochemistry 10:2693–2698.CrossRefGoogle Scholar
  26. Cipera, J. D., and Hidinoglou, M., 1969. Comparative study of the metabolic fate of selenate, selenite, and sulfate ions in cartilage, Can. J. Physiol. Pharmacol. 47:591–595.PubMedCrossRefGoogle Scholar
  27. Coch, E. H., and Greene, R. C., 1971. The utilization of selenomethionine by Escherichia coli, Biochim. Biophys. Acta 230:223–236.PubMedCrossRefGoogle Scholar
  28. Cowie, D. B., and Cohen, G. N., 1957. Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur, Biochim. Biophys. Acta 26:252–261.PubMedCrossRefGoogle Scholar
  29. Cummins, L. M., and Martin, J. L., 1967. Are selenocystine and selenomethionine synthesized in vivo from sodium selenite in mammals?, Biochemistry 6:3162–3168.PubMedCrossRefGoogle Scholar
  30. DiFerrante, N., and Rich, C., 1956. The mucopolysaccharide of normal human urine, Clin. Chim.Acta 1:519–524.CrossRefGoogle Scholar
  31. Diplock, A. T., and Lucy, J. A., 1973. The biochemical modes of action of vitamin E and selenium: A hypothesis, FEBS Lett. 29:205–210.PubMedCrossRefGoogle Scholar
  32. Diplock, A. T., Caygill, C. P. J., Jeffrey, E. H., and Thomas, C., 1973. The nature of the acid-volatile selenium in the liver of the male rat, Biochem. J. 134:283–293.PubMedGoogle Scholar
  33. Doran, J. A., and Alexander, M., 1977a. Microbial formation of volatile selenium compounds in soil, Soil Sci. Soc. Am. J. 41:70–73.CrossRefGoogle Scholar
  34. Dubois, K. P., Moxon, A. L., and Olson, O. E., 1940. Further studies on the effectiveness of arsenic in preventing selenium poisoning, J. Nutr. 19:477–482.Google Scholar
  35. Ehlig, C. F., Hogue, D. E., Allaway, W. H., and Hamm, D. J., 1967. Fate of Se from selenite or seleno-methionine with or without vitamin E in lambs, J. Nutr. 92:121–126.PubMedGoogle Scholar
  36. Ellis, R. J., 1969. Sulfate activation in higher plants, Planta 88:34–42.CrossRefGoogle Scholar
  37. Evans, C., Asher, C., and Johnson, C. M., 1968. Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh), Aust. J. Biol. Sci. 21:13–20.Google Scholar
  38. Falcone, G., and Nickerson, W. J., 1960. Metabolisms of selenite and mechanism of inhibitory action of selenite on yeasts, Giorn. Microbiol. 8:129–150.Google Scholar
  39. Fee, J. A., and Palmer, G., 1971. The properties of parsley ferredoxin and its selenium-containing homolog, Biochem. Biophys. Acta 245:175–195.PubMedCrossRefGoogle Scholar
  40. Fels, I. G., and Cheldelin, V. H., 1949a. Selenate inhibition studies. III. The role of sulfate in selenate toxicity in yeast, Arch. Biochem. Biophys. 22:402–405.Google Scholar
  41. Finazzi Agro, A., Federici, G., Giovagnoli, C., Cannella, C., and Cavallini, D., 1972. Effect of sulfur binding on rhodanese fluorescence, Eur. J. Biochem. 28:89–93.PubMedCrossRefGoogle Scholar
  42. Flemming, R. W., and Alexander, M., 1972. Dimethylselenide and dimethyltelluride formation by a strain of Penicillium, Appl. Microbiol. 24:424–429.Google Scholar
  43. Foyer, C. H. and Halliwell, B., 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism, Planta, 133:21–25.CrossRefGoogle Scholar
  44. Francis, A. J., Duxbury, J. M., and Alexander, M., 1974. Evolution of dimethylselenide from soils. Appl. Microbiol. 28:248–250.PubMedGoogle Scholar
  45. Franke, K. W. and Moxon, A. L., 1936. A comparison of the minimum fatal doses of selenium, tellurium, arsenic and vanadium, J. Pharmacol. Exptl. Therap. 58:454–459.Google Scholar
  46. Fuss, C. N., and Godwin, K. O., 1975. A comparison of the uptake of {75Se} selenite, {75Se} selenomethionine and {35S} methionine in tissues of ewes and lambs, Aust. J. Biol. Sci. 28:239–249.PubMedGoogle Scholar
  47. Galambos, J. T., and Green, I., 1964. Parallel labelling on nondialyzable components of rabbit urine following 75Se04 and 35S03 injections, Biochim. Biophys. Acta 83:204–208.PubMedGoogle Scholar
  48. Ganther, H. E., 1966. Enzymic synthesis of dimethyl selenide from sodium selenite in mouse liver extracts, Biochemistry 5:1089–1098.PubMedCrossRefGoogle Scholar
  49. Ganther, H. E., 1968. Selenotrisulfides. Formation by the reaction of thiols with selenious acid, Biochemistry 7:2898–2905.PubMedCrossRefGoogle Scholar
  50. Ganther, H. E., 1971. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase, Biochemistry 10:4089–4098.PubMedCrossRefGoogle Scholar
  51. Ganther, H. E., and Baumann, C. A., 1962. Selenium metabolism. II. Modifying effects of sulfate, J. Nutr. 77:408–414.PubMedGoogle Scholar
  52. Ganther, H. E., and Concoran, C., 1969. Selenotrisulfides. II. Cross-linking of reduced pancreatic ribonuclease with selenium, Biochemistry 8:2557–2563.PubMedCrossRefGoogle Scholar
  53. Ganther, H. E., Levander, O. A., and Baumann, C. A., 1966. Dietary control of selenium volatilization in the rat, J. Nutr., 88:55–60.PubMedGoogle Scholar
  54. Ganther, H. E., Oh, S. H., Chitharanjan, D., and Hoekstra, W. G., 1974. Studies on selenium in glutathione peroxidase, Fed. Proc. Fed. Soc. Am. Exp. Biol. 33:694.Google Scholar
  55. Giasuddin, A. S. M., Caygill, C. P. J., Diplock, A. T., and Jeffrey, E. H., 1975. The dependence on vitamin E and selenium of drug dimethylation in rat liver microsomal fractions, Biochem. J. 146:339–350.PubMedGoogle Scholar
  56. Gissel-Nielsen, G., 1970. Loss of selenium in drying and storage of agronomic plant species, Plant Soil 32:242–245.CrossRefGoogle Scholar
  57. Godwin, K. O., and Fuss, C. N., 1972. The entry of selenium into rabbit protein following the administration of Na2 75SeO3, Aust. J. Biol. Sci. 25:865–871.PubMedGoogle Scholar
  58. Green, J., 1972. Vitamin E and the biological antioxidant theory, Ann. N.Y. Acad. Sci. 203:29–44.PubMedCrossRefGoogle Scholar
  59. Hahn, G. A., and Brown, J. W., 1967. Properties of a methionyl-t RNS synthetase from Sarcina lutea, Biochim. Biophys. Acta 146:264–271.PubMedCrossRefGoogle Scholar
  60. Halverson, A. W., and Monty, K. J., 1960. An effect of dietary sulfate on selenium poisoning in the rat, J. Nutr. 70:100–102.PubMedGoogle Scholar
  61. Halverson, A. W., Guss, P. L., and Olson, O. E., 1962. Effect of sulfur salts on selenium poisoning in the rat, J. Nutr. 77:459–464.PubMedGoogle Scholar
  62. Halverson, A. W., Hills, C. L., and Whitehead, E. I., 1964. Studies on selenium toxicity and chondroitin sulfate and taurine biosynthesis in the chick embryo, Arch. Biochem. Biophys. 107:88–91.PubMedCrossRefGoogle Scholar
  63. Hilz, H., and Lipmann, F., 1955. the enzymatic activation of sulfate, Proc. Natl. Acad. Sci. 41:880–890.PubMedCrossRefGoogle Scholar
  64. Hirooka, T., and Galambos, J. T., 1966. Selenium metabolism. I. Respiratory excretion, Biochim. Biophys. Acta 130:313–320.PubMedCrossRefGoogle Scholar
  65. Hoffman, J. L., McConnell, K. P., and Carpenter, D. R., 1969. Aminoacylation of E. coli methionine tRNA by selenomethionine, Fed. Proc. Fed. Soc. Am. Exp. Biol. 28:860.Google Scholar
  66. Hofmeister, F., 1894. Ueber methylirung im theirkoerper, Arch. Exp. Pathol. Pharmakol. 33:198–215.CrossRefGoogle Scholar
  67. Holker, J. R., and Speakman, J. B., 1958. Action of selenium dioxide on wool, J. Appl. Chem. 8:1–3.CrossRefGoogle Scholar
  68. Hsieh, H. S., and Ganther, H. E., 1975. Acid-volatile selenium formation catalyzed by glutathione reductase, Biochemistry 14:1632–1636.PubMedCrossRefGoogle Scholar
  69. Huber, R. E., and Criddle, R. S., 1967. The isolation and properties of beta-galactosidase from Escherichia coli grown in sodium selenate, Biochim. Biophys. Acta 141:587–599.PubMedCrossRefGoogle Scholar
  70. Huber, R. E., Segel, I. H., and Criddle, R. S., 1967. Growth of Escherichia coli on selenate, Biochim. Biophys. Acta 141:573–586.PubMedCrossRefGoogle Scholar
  71. Hunter, F. E., Jr., Gebicki, J. M., Hoffsten, P. E., Weinstein, J., and Scott, A., 1963. Swelling and lysis of rat liver mitochondria induced by ferrous ions, J. Biol. Chem. 238:828–835.PubMedGoogle Scholar
  72. Hurd-Karrer, A. M., 1937. Comparative toxicity of selenates and selenites to wheat, Am. J. Bot. 24:720–728.CrossRefGoogle Scholar
  73. Hurd-Karrer, A. M., 1938. Relation of sulphate to selenium absorption by plants, Amer. J. Bot. 25:666–675.CrossRefGoogle Scholar
  74. Jablonski, P. P., and Anderson, J. W., 1978. Light-dependent reduction of oxidized glutathione by ruptured chloroplasts, Plant Physiol. 61:221–225.PubMedCrossRefGoogle Scholar
  75. Jenkins, K. J., and Hidiroglow, M., 1971. Comparative uptake of selenium by low cystine and high cystine proteins, Can J. Biochem. 49:468–472.PubMedGoogle Scholar
  76. Kemp, J. D., Atkinson, D. E., Ehrer, A., and Lazzarini, R. A., 1963. Evidence for the identity of the nicotinamide adenine dinucleotide phosphate-specific sulfite and nitrite reductases of Escherichia coli, J. Biol. Chem. 238:3466–3471.PubMedGoogle Scholar
  77. Kumar, H. D., 1964. Adaptation of a blue-green alga to sodium selenate and chloramphenicol, Plant Cell Physiol. 5:465–472.Google Scholar
  78. Kylin, A., 1967. The uptake and metabolism of sulfate in Scenedesmus as influenced by citrate, carbon dioxide, and metabolic inhibitors, Physiol. Plant. 20:139–148.CrossRefGoogle Scholar
  79. Lapage, S. P., and Bascomb, S., 1968. Use of Selenite reduction in bacterial classification, J. Appl. Bact. 31:568–580.CrossRefGoogle Scholar
  80. Leggett, J. E., and Epstein, E., 1956. Kinetics of sulfate absorption by barley roots, Plant Physiol. 31:222–226.PubMedCrossRefGoogle Scholar
  81. Leifson, E., 1936. New selenite enrichment media for the isolation of typhoid and parathyroid (salmonella) bacilli, Amer. J. Hyg. 24:423–432.Google Scholar
  82. Letunova, S. V., 1970. Geochemical ecology of soil microorganisms, in C. F. Mills (ed.), Trace Element Metabolism in Animals, Livingstone, Edinburgh, pp. 432–437.Google Scholar
  83. Levander, O. A., and Argrett, L. C., 1969. Effects of arsenic, mercury, thallium, and lead on selenium metabolism in rats, Toxicol. Appl. Pharmacol. 14:308–314.PubMedCrossRefGoogle Scholar
  84. Levander, O. A., Morris, V. C., and Higgs, D. J., 1973a. Acceleration of thiol-induced swelling of rat liver mitochondria by selenium, Biochemistry 12:4586–4590.PubMedCrossRefGoogle Scholar
  85. Levander, O. A., Morris, V. C., and Higgs, D. J., 1973b. Selenium as a catalyst for the reduction of cytochrome C by glutathione, Biochemistry 12:4591–4595.PubMedCrossRefGoogle Scholar
  86. Levander, O. A., Morris, V. C., and Higgs, D. J., 1974. Characterization of the selenium in rat liver mitochondria as glutathione peroxidase, Biochem. Biophys. Res. Commun. 58:1047–1052.PubMedCrossRefGoogle Scholar
  87. Levine, V. E., 1925. The reducing properties of microorganisms with special reference to selenium compounds, J. Bacteriol. 10:217–263.PubMedGoogle Scholar
  88. Lewis, B., Johnson, C. M., and Del wiche, C. C., 1966. Release of volatile selenium compounds by plants: Collection procedures and preliminary observations, J. Agr. Food Chem. 14:638–640.CrossRefGoogle Scholar
  89. Lewis, B., Johnson, C. M., and Broyer, T. C., 1974. Volatile selenium in higher plants, Plant Soil 40:107–118.CrossRefGoogle Scholar
  90. Mahl, M. C., and Whitehead, E. I., 1961. Relationship between selenite and phosphate uptakes in respiring yeast cells, Proc. S. Dakota Acad. Sci. 40:93–97.Google Scholar
  91. Massey, V., and Williams, Jr., C. H., 1965. On the mechanism of yeast glutathione reductase, J. Biol. Chem. 240:4470–4480.PubMedGoogle Scholar
  92. Masukawa, T., and Iwata, H., 1977. Catalytic action of selenium in the reduction of methemoglobin by glutathione, Life Sci. 21:695–700.PubMedCrossRefGoogle Scholar
  93. Mautner, H. G., and Günther, W. H. H., 1959. Selenopantethine, a functional analog of pantethine in the Lactobacillus helveticus system, Biochim. Biophys. Acta 36:561–562.CrossRefGoogle Scholar
  94. Mazelis, M., Levin, B., and Mallinson, N., 1965. Decomposition of methyl-methionine sulfonium salts by a bacterial enzyme, Biochim. Biophys. Acta 105:106–114.PubMedCrossRefGoogle Scholar
  95. McConnell, K. P., and Cho, G. J., 1965. Transmucosal movement of selenium, Am. J. Physiol. 208:1191–1195.PubMedGoogle Scholar
  96. McConnell, K. P., and Cho, G. J., 1967. Active transport of L-seleno-methionine in the intestine, Am. J. Physiol. 213:150–156.PubMedGoogle Scholar
  97. McConnell, K. P., and Hoffman, J. L., 1972. Methionine-selenomethionine parallels in rat liver polypeptide chain synthesis, FEBS Lett. 24:60–62.PubMedCrossRefGoogle Scholar
  98. McConnell, K. P., and Portman, O. W., 1952. Toxicity of dimethyl selenide in the rat and mouse, Proc. Soc. Exp. Biol. Med. 79:230–231.PubMedGoogle Scholar
  99. McConnell, K. P., and Roth, D. M., 1966. Respiratory excretion of selenium, Proc. Soc. Exp. Biol. Med. 123:919–921.PubMedGoogle Scholar
  100. McConnell, K. P., and Wabnitz, C. H., 1957. Studies on the fixation of radioselenium in proteins, J. Biol. Chem. 226:765–776.PubMedGoogle Scholar
  101. McConnell, K. P., Hsu, J. M., Herrman, J. L., and Anthony, W. L., 1974. Parallelism between sulfur and selenium amino acids in protein synthesis in the skin of zinc deficient rats, Proc. Soc. Exp. Biol. Med. 145:970–974.PubMedGoogle Scholar
  102. McCready, R. G. L., Campbell, J. N., and Payne, J. I., 1966. Selenite reduction by Salmonella Heidelberg, Can. J. Microbiol. 1:703–714.CrossRefGoogle Scholar
  103. Millar, K. R., 1972. Distribution of Se75 in liver, kidney, and blood proteins of rats after intravenous injection of sodium selenite, N.Z.J. Agr. Res. 15:547–564.CrossRefGoogle Scholar
  104. Millar, K. R., and Shepphard, A. D., 1973. A comparison of the metabolism of methionine and selenomethionine in rats, N.Z.J. Agr. Res. 16:293–300.CrossRefGoogle Scholar
  105. Millar, K. R., Gardiner, M. A., and Shepphard, A. D., 1973. A comparison of the metabolism of intravenously injected sodium selenite, sodium selenate and selenomethionine in rats, N. Z. J. Agr. Res. 16:115–127.CrossRefGoogle Scholar
  106. Mudd, S. H., and Cantoni, G. L., 1957. Selenomethionine in enzymatic transmethylations, Nature 180:1052.PubMedCrossRefGoogle Scholar
  107. Mukai, K., Huang, J. J., and Kimura, T., 1974. Studies on adrenal steroid hydroxylases. Chemical and enzymatic properties of selenium derivatives of adrenal iron-sulfur protein, Biochim. Biophys. Acta 336:427–436.CrossRefGoogle Scholar
  108. Muth, O. H., Schubert, J. R., and Oldfield, J. E., 1961. White muscle disease (myopathy) in lambs and calves. VII. Etiology and prophylaxis, Am. J. Vet. Res. 22:466–469.PubMedGoogle Scholar
  109. Ng, B. H., and Anderson, J. W., 1978a. Chloroplast cysteine synthases of Trifolium repens and Pisum sativum, Phytochemistry 17:879–885.CrossRefGoogle Scholar
  110. Ng, B. H., and Anderson, J. W., 1978b. Synthesis of selenocysteine syntheses from selenium accumulator and nonaccumulator plants, Phytochemistry 17:2069–2074.CrossRefGoogle Scholar
  111. Ng, B. H., and Anderson, J. W., 1979. Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts, Phytochemistry 18:573–580.CrossRefGoogle Scholar
  112. Nickerson, W. J., and Falcone, G. 1963. Enzymatic reduction of selenite, J. Bacteriol. 85:763–771.PubMedGoogle Scholar
  113. Nigam, S. N., and McConnell, W. B., 1969. Seleno amino compounds from Astragalus bisculcatus. Isolation and identification of gamma-L-glutamyl-Se-methylseleno-L-cysteine and Se-methylseleno-L-cysteine, Biochim. Biophys. Acta 192:185–190.PubMedCrossRefGoogle Scholar
  114. Nigam, S. N., and McConnell, W. B., 1973. Biosynthesis of Se-methylselenocysteine, Phytochemistry 12:359–362.CrossRefGoogle Scholar
  115. Nisman, B., and Hirsch, M. L., 1958. Study of activation and incorporation of amino acids by enzymatic fractions of Escherichia coli, Ann. Inst. Pasteur Paris 95:615–636.PubMedGoogle Scholar
  116. Nissen, P., and Benson, A., 1964. Absence of selenate esters and “selenolipid” in plants, Biochem. Biophys. Acta 83:400–402.Google Scholar
  117. Obermeyer, B. D., Palmer, I. S., Olson, O. E., and Halverson, A. W., 1971. Toxicity of trimethylselenonium chloride in the rat with and without arsenite, Toxicol. Appl. Pharmacol. 20:135–145.PubMedCrossRefGoogle Scholar
  118. Olson, O. E., and Palmer, I. S., 1976. Selenoamino acids in tissues of rats administered inorganic selenium, Metabolism 25:299–306.PubMedCrossRefGoogle Scholar
  119. Olson, O. E., Schulte, B. M., Whitehead, E. I., and Halverson, A. W., 1963. Effect of arsenic on selenium metabolism in rats, J. Agr. Food Chem. 11:531–534.CrossRefGoogle Scholar
  120. Olson, O. E., Novacek, E. J., Whitehead, E. I., and Palmer, I. S., 1970. Investigations on selenium in wheat, Phytochemistry 9:1181–1188.CrossRefGoogle Scholar
  121. Opienska-Blauth, J., and Iwanowski, 1952. The effect of selenite on growth and conversion of carbohydrates in liquid cultures of Escherichia coli, Acta Microbiol. Polon. 1:273–359.Google Scholar
  122. Orme-Johnson, W. H., Hansen, R. E., Beinert, H., Tsibris, J. C. M., Bartholomaus, R. C., and Gunsalus, I. C., 1968. On the sulfur components of iron-sulfur proteins. I. The number of acid-labile sulfur groups sharing an unpaired electron with iron, Proc. Natl. Acad. Sci. 60:368–372.PubMedCrossRefGoogle Scholar
  123. Painter, E. P., 1941. The chemistry and toxicity of selenium compounds with special reference to the selenium problem, Chem. Rev. 28:179–213.CrossRefGoogle Scholar
  124. Palmer, I. S., Fischer, D. D., Halverson, A. W., and Olson, O. E., 1969. Identification of a major selenium excretory product in rat urine, Biochem. Biophys. Acta 177:336–342.PubMedCrossRefGoogle Scholar
  125. Palmer, I. S., Gunsalus, R. P., Halverson, A. W., and Olson, O. E., 1970. Trimethylselenonium ion as a general excretory product from selenium metabolism in the rat, Biochim. Biophys. Acta 208:260–266.PubMedCrossRefGoogle Scholar
  126. Palmer, I. S., 1973. An example of the lack of parallelism in the metabolism of sulfur and selenium, Proc. S. Dak. Acad. Sci. 52:108–111.Google Scholar
  127. Pan, F., Natoti, Y., and Tarver, H., 1964. Studies on selenium compounds. II. Metabolism of selenomethionine and selenoethionine in rats, Biochim. Biophys. Acta 93:521–525.PubMedCrossRefGoogle Scholar
  128. Pan, F., and Tarrer, H., 1967. Comparative studies on methionine, selenomethionine, and their ethyl analogues as substrates for methionine adenosynetransferase from rat liver, Arch. Biochem. Biophys. 119:429–434.PubMedCrossRefGoogle Scholar
  129. Parizek, J., Ostadalova, I., Kalouskova, J., Babicky, A., and Benes, J., 1971. The detoxifying effects of selenium: Interrelations between compounds of selenium in certain metals, in W. Mertz and W. E. Cornatzer (eds.), Newer Trace Elements in Nutrition, Marcel Dekker, New York, pp. 85–122.Google Scholar
  130. Patrick, H., Voitle, R. A., Hyre, H. M., and Martin, W. G., 1965. Incorporation of 32phosphorous and 75selenium in cock sperm, Poult. Sci. 19:587–591.CrossRefGoogle Scholar
  131. Paulson, G. D., Baumann, C. A., and Pope, A. L., 1966. Fate of a physiological dose of selenate in the lactating ewe: Effect of sulfate, J. Anim. Sci. 25:1054–1058.PubMedGoogle Scholar
  132. Paulson, G. D., Baumann, C. A., and Pope, A. L., 1968. Metabolism of 75Se-selenite, 75Seselenate, 75Se-selenomethionine, and 35S-sulfate by rumin microorganisms in vitro, J. Anim. Sci. 27:497–503.PubMedGoogle Scholar
  133. Peterson, G., and Butler, G., 1962. The uptake and assimilation of selenite by higher plants, Aust. J. Biol. Sci 15:126–146.Google Scholar
  134. Pope, A. L., Moir, R. J., Somers, M., Underwood, E. J., and White, C. L., 1979. The effect of sulphur on 75Se absorption and retention in sheep, J. Nutr. 109:1448–1454.PubMedGoogle Scholar
  135. Reamer, D. C., and Zoller, W. H., 1980. Selenium biomethylation products from soil and sewage sludge, Science 208:500–502.PubMedCrossRefGoogle Scholar
  136. Rhead, W. J., and Schrauzer, G. N., 1974. The selenium catalyzed reduction of methylene blue by thiols, Bioinorg. Chem. 3:225–242.PubMedCrossRefGoogle Scholar
  137. Rhead, W. J., Evans, G. A., and Schrauzer, G. N., 1974. Selenium in human plasma: Levels in blood proteins and behavior upon dialysis, acidificatin and reduction, Bioinorg. Chem. 3:217–223.PubMedCrossRefGoogle Scholar
  138. Robbins, P. W., and Lipmann, F., 1956. The enzymatic sequence in the biosynthesis of active sulfate, J. Am. Chem. Soc. 78:6409–6410.CrossRefGoogle Scholar
  139. Rosenfeld, I., 1962. Biochemical and chemical studies on Astragalus leaves and roots, Univ. Wyoming Agr. Exp. Sta. Bull. 385:1–43.Google Scholar
  140. Rosenfeld, I., and Beath, O. A., 1948. Metabolism of sodium selenite by the tissues, J. Biol. Chem., 172:333–341.PubMedGoogle Scholar
  141. Rotruck, J. T., Pope, J. T., Ganther, H. E., Swanson, A. B., Hafeman, D. G., and Hoekstra, G. W., 1973. Selenium: Biochemical role as a component of glutathione peroxidase, Science, 179:588–590.PubMedCrossRefGoogle Scholar
  142. Said, A. K., and Hegsted, D. M., 1970. 75Se-selenomethionine in the study of protein and amino acid metabolism of adult rats, Proc. Soc. Exp. Biol. Med. 133:1388–1391.PubMedGoogle Scholar
  143. Sapozhnikov, D. I., 1937. The exchange of sulfur by selenium during the photoreduction of H2CO3 by purple sulfur bacteria, Mikrobiologia (USSR) 6:643–644.Google Scholar
  144. Scala, J., and Williams, H. H., 1963. A comparison of selenite and tellurite toxicity in Escherichia coli, Arch. Biochem. Biophys. 101:319–324.PubMedCrossRefGoogle Scholar
  145. Schiff, J. A., and Hodson, R. C. 1973. Metabolism of sulfate, Ann. Rev. Plant Physiol. 24:381–414.CrossRefGoogle Scholar
  146. Schubert, J. R., Muth, O. H., Oldfield, J. E., and Remmert, L. F., 1961. Experimental results with selenium in white muscle disease of lambs and calves, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20:689–694.Google Scholar
  147. Schwarz, K., 1961. Development and status of experimental work on Factor 3-selenium, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20:666–673.Google Scholar
  148. Schwarz, K., and Sweeny, E., 1964. Selenite binding to sulfur amino acids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 23:421.Google Scholar
  149. Shepherd, L., and Huber, R. E., 1969. Some chemical and biochemical properties of selenomethionine, Can J. Biochem. 47:877–881.PubMedCrossRefGoogle Scholar
  150. Shrift, A., 1954a. Sulfur-selenium antagonism. I. Antimetabolite action of selenate on the growth of chlorella vulgaris, Am. J. Bot. 41:223–230.CrossRefGoogle Scholar
  151. Shrift, A., 1960. A role for methionine in division of chlorella vulgaris, Plant Physiol. 35:510–515.PubMedCrossRefGoogle Scholar
  152. Shrift, A., 1961. Biochemical interrelations between selenium and sulfur in plants and microorganisms, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20:695–702.Google Scholar
  153. Shrift, A., 1967. Microbial research with selenium, in Selenium in biomedicine, O. H. Muth (ed.), AVI Publishing Co., Westport, Connecticut, pp. 241–271.Google Scholar
  154. Shrift, A., 1969. Aspects of selenium metabolism in higher plants, Ann. Rev. Plant Physiol 20:475–494.CrossRefGoogle Scholar
  155. Shrift, A., 1973. Selenium compounds in Nature and Medicine, in Organic Selenium Compounds: Their Chemistry and Biology, D. L. Klayman and W. H. H. Günther (eds.), John Wiley, New York, pp. 763–814.Google Scholar
  156. Shrift, A., and Kelley, E., 1962. Adaptation of Escherichia colito selenate, Nature (London) 195:732–733.CrossRefGoogle Scholar
  157. Shrift, A., and Sproul, M., 1963. Nature of the stable adaptation induced by selenomethionine in Chlorella vulgaris, Biochim. Biophys. Acta 71:332–344.PubMedCrossRefGoogle Scholar
  158. Shrift, A., and Ulrich, J. M., 1969. Transport of selenate and selenite into Astragalus roots, Plant Physiol. 44:893–896.PubMedCrossRefGoogle Scholar
  159. Smith, M. I., Westfall, B. B., and Stohlman, E. F., 1938. Studies on the fate of selenium in the organism, Pub. Health Rep. 53:1199–1216.CrossRefGoogle Scholar
  160. Tappel, A. L., and Caldwell, K. A., 1967. Redox properties of selenium compounds related to biochemical function, in Selenium in Biomedicine, O. H. Muth, J. E. Oldfield, and P. H. Weswig (eds.), Avi Publishing Co., Westport, Connecticut, pp. 345–361.Google Scholar
  161. Tappel, A. L., 1972. Vitamin E and free radical peroxidation of lipids, Ann. N.Y. Acad. Sci. 203:12–28.PubMedCrossRefGoogle Scholar
  162. Tilton, R. C., Gunner, H. B., and Litsky, W., 1967. Physiology of selenite reduction by enterococci. I. Influence of environmental variables, Can. J. Microbiol. 13:1175–1185.PubMedCrossRefGoogle Scholar
  163. Trelease, S. F., and Trelease, H. M., 1938. Selenium as a stimulating and possibly essential element for indicator plants, Am. J. Bot., 25:372–380.CrossRefGoogle Scholar
  164. Tsay, D. T., Halverson, A. W., and Palmer, I. S., 1970. Inactivity of dietary trimethylselenonium chloride against the necrogenic syndrome of the rat, Nutr. Rep. Int. 2:203–207.Google Scholar
  165. Tsibris, J. C. M., Namtvedt, M. J., and Gunsalus, I. C., 1968. Selenium as an acid labile sulfur replacement in putidaredoxin, Biochem. Biophys. Res. Commun. 30:323–327.PubMedCrossRefGoogle Scholar
  166. Tweedie, J. W., and Segal, I. H., 1970. Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi, Biochim. Biophys. Acta 196:95–106.PubMedCrossRefGoogle Scholar
  167. Ulrich, J. M., and Shrift, A., 1968. Selenium absorption by excised Astragalus roots, Plant Physiol. 43:14–20.PubMedCrossRefGoogle Scholar
  168. Virupaksha, T., and Shrift, A., 1963. Biosynthesis of selenocystathionine from selenate in Stanleya pinnata, Biochim. Biophys. Acta 74:791–793.PubMedCrossRefGoogle Scholar
  169. Vlasakova, V., Benes, J., and Parizek, J., 1972. Application of gas chromatography for the analysis of trace amounts of volatile 75Se metabolites in expired air, Radiochem. Radioanal. Lett. 10:251–258.Google Scholar
  170. Weiss, K. F., Ayres, J. C., and Kraft, A. A., 1965. Inhibitory action of selenite on Escherichia coli, Proteus vulgaris and Salmonella thompson, J. Bacteriol. 90:857–862.PubMedGoogle Scholar
  171. Whanger, P. D., Muth, O. H., Oldfield, J. E., and Weswig, P. H., 1969. Influence of sulfur on incidence of white muscle disease in lambs, J. Nutr. 97:553–561.PubMedGoogle Scholar
  172. Whanger, P. D., Pedersen, N. D. and Weswig, P. H., 1973. Selenium proteins in ovine tissues. II. Spectral properties of a 10,000 molecular weight selenium protein, Biochem. Biophys. Res. Commun. 53:1031–1036.PubMedCrossRefGoogle Scholar
  173. White, C. L., 1980. Sulfur-selenium studies in sheep. II. Effect of a dietary sulfur deficiency on selenium and sulfur metabolism in sheep fed varying levels of selenomethionine, Aust. J. Biol. Sci. 33:699–707.PubMedGoogle Scholar
  174. White, C. L., and Somers, M., 1977. Sulphur-selenium studies in sheep. I. The effects of varying dietary sulphate and selenomethionine on sulphur, Nitrogen and selenium metabolism in sheep, Aust. J. Biol. Sci. 30:47–56.PubMedGoogle Scholar
  175. Widstrom, V. R., 1961. Effect of selenate ions on the growth of Neurospora crassa in the presence of various sulfur sources, Proc. S. Dak. Acad. Sci. 40:208–212.Google Scholar
  176. Wilson, L. G., and Bandurski, R. S., 1958. Enzymatic reactions involving sulfate, sulfite, selenate and molybdate, J. Biol. Chem. 233:975–981.PubMedGoogle Scholar
  177. Woolfolk, C. A., and Whiteley, H. R., 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus, J. Bacteriol. 84:647–658.PubMedGoogle Scholar
  178. Wright, P. L., and Mraz, F. R., 1965. Toxicity of sulfur-35, Proc. Soc. Exp. Biol. Med. 118:534–539.PubMedGoogle Scholar
  179. Wu, M., and Wachsman, J. T., 1970. Effect of selenomethionine on growth of Escherichia coli and Bacillus megaterium, J. Bacteriol. 104:1393–1396.PubMedGoogle Scholar
  180. Wu, M., and Wachsman, J. T., 1971. Selenomethionine, a methyl donor for bacterial nucleic acids, J. Bacteriol. 105:1222–1223.PubMedGoogle Scholar
  181. Yamamoto, L. A., and Segal, I. H., 1966. The inorganic sulfate transport system of Penicillium chrysogenum, Arch. Biochem. Biophys. 114:523–538.PubMedCrossRefGoogle Scholar
  182. Yousef, M. K., and Johnson, H. D., 1970. 75Se-selenomethionine turnover rate during growth and aging in rats, Proc. Soc. Exp. Biol. Med. 133:1351–1353.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Raymond J. Shamberger
    • 1
  1. 1.The Cleveland Clinic FoundationClevelandUSA

Personalised recommendations