Advertisement

Forms of Selenium

  • Raymond J. Shamberger
Part of the Biochemistry of the Elements book series (BOTE, volume 2)

Abstract

The forms of selenium that occur in living systems (Table 1-1) and the forms that are biologically available to the organism depend on the form of selenium supplied to the organism, the amount of selenium supplied, and the species of plant or animal. For the purpose of this chapter it is most convenient to distinguish the forms of selenium which are present naturally. These include compounds of low molecular weight, which occur in the free form, and also natural forms of selenium which are present in high-molecular-weight compounds. Forms which are synthesized and have biological activity are listed in Chapter 9.

Keywords

Glutathione Peroxidase Selenium Compound Elemental Selenium Aqueous Ethanol Extract Selenoamino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronow, L., and Kerdel-Vegas, F., 1965. Seleno-cystathionine, a pharmacologically active factor in the seeds of Lecy this ollaria, Nature 205:1185–1186.CrossRefGoogle Scholar
  2. Andressen, J. R., and Ljungdahl, L. G., 1973. Formate dehydrogenase of Clostridium thermoaceticum: Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme, J. Bacteriol. 116-867–873.Google Scholar
  3. Awasthi, Y. C., Beutler, E., and Srivastava, S. K., 1975. Purification and properties of human erythrocyte glutathione peroxidase, J. Biol. Chem. 250:5144–5149.PubMedGoogle Scholar
  4. Blau, M., 1961. Biosynthesis of {75Se} selenomethionine and {75Se} selenocystine. Biochim. Biophys. Acta 49:389–390.CrossRefGoogle Scholar
  5. Burk, R. F., and Gregory, P. E., 1982, Some characteristics of 75Se-P, a selenoprotein found in rat liver and plasma, and comparison of it with selenoprotein peroxidase, Arch. Biochem. Biophys. 213:73–82.PubMedCrossRefGoogle Scholar
  6. Butler, G. W., and Peterson, P. J., 1967. Uptake and metabolism of inorganic forms of selenium-75 by Spirondela oligorrhiza, Aust. J. Biol. Sci. 20:77–86.Google Scholar
  7. Byard, J. L., 1969, Trimethyl selenide. A urinary metabolite of selenite, Arch. Biochem. Biophys. 130:556–560.PubMedCrossRefGoogle Scholar
  8. Calvin, H. I., 1978. Selective incorporation of selenium-75 into a polypeptide of the rat sperm tail, J. Exp. Zool. 204:445–452.PubMedCrossRefGoogle Scholar
  9. Challenger, R., 1951. Biological methylation, Adv. Enzymol. 12:429–491.Google Scholar
  10. Chen, C. S., and Stadtman, T. C., 1980. Selenium-containing tRNA’s from Clostridium sticklandii: Cochromatography of one species with L-prolyl-tRNA, Proc. Natl. Acad. Sci. 77:1403–1407.PubMedCrossRefGoogle Scholar
  11. Christ-Hazelhof, E., Nugteren, D. H., and Van Dorp, D. A., 1976. Conversions of Prostaglandin endoperoxides by glutathione-S-transferases and serum albumins, Biochim. Biophys. Acta 450:450–461.PubMedCrossRefGoogle Scholar
  12. Christophersen, B. O., 1968. Formation of monohydroxypolyenic fatty acids from lipid peroxides by a glutathione peroxidase, Biochim. Biophys. Acta 164:35–46.PubMedCrossRefGoogle Scholar
  13. Christophersen, B. O., 1969a. Reduction of linolenic acid hydroperoxide by a glutathione peroxidase, Biochim. Biophys. Acta 176:463–470.PubMedCrossRefGoogle Scholar
  14. Christophersen, B. O., 1969b. Reduction of x-ray-induced DNA and thymine hydroperoxides by rat liver glutathione peroxidase, Biochim. Biophys. Acta 186:387–389.PubMedCrossRefGoogle Scholar
  15. Cone, J. E., Martin del Rio, R., Davis, J. N., and Stadtman, T. C., 1976. Chemical characterization of the selenoprotein component of Clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety, Proc. Natl. Acad. Sci. 73:2659–2663.PubMedCrossRefGoogle Scholar
  16. Cowie, D. B., and Cohen, G. N., 1957. Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur, Biochim. Biophys. Acta 26:252–261.PubMedCrossRefGoogle Scholar
  17. Diplock, A. T., Caygill, C. P. J., Jeffery, E. H., and Thomas, C., 1973. The nature of the acid-volatile selenium in the liver of the male rat. Biochem. J. 134:283–293.PubMedGoogle Scholar
  18. Dransfield, P. B., and Challenger, F., 1955. Studies on biological methylation. Part XV. The formation of dimethyl selenide in mould cultures in presence of D-and L-methionine, or of thetins, all containing the 14CH3 group, J. Chem. Soc. 1955:1153–1160.CrossRefGoogle Scholar
  19. Enoch, H. G., and Lester, R. L., 1972. Effects of molybdate, tungstate and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli, J. Bacteriol. 110:1032–1039.PubMedGoogle Scholar
  20. Enoch, H. G., and Lester, R. L., 1975. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli, J. Biol. Chem. 250:6693–6705.PubMedGoogle Scholar
  21. Evans, C. S., Asher, C. J., and Johnson, C. M., 1968. Isolation of dimethyldiselenide and other volatile selenium compounds from Astragalus racemosus (Pursh), Aust. J. Biol. Sci. 21:13–20.Google Scholar
  22. Flohe, L., 1976. Role of selenium in hydroperoxide metabolism, in Proceedings of the Symposium on Selenium-Tellurium Environment, Industrial Health Found., Inc., Pittsburgh, pp. 138–157.Google Scholar
  23. Flohe, L., and Schlegel, W., 1971. Glutathion-peroxidase, IV. Intrazellulare Verteilung des glutathion-peroxidase-systems in der rattenleber, Hoppe Seylers Z. Physiol. Chem. 352:1401–1410.PubMedCrossRefGoogle Scholar
  24. Flohe, L., Eisele, B., and Wendel, A., 1971. Glutathion-peroxidase. I. Reindarstellung and Molekulargewichtsbestimmungen, Hoppe-Seylers Z. Physiol. Chem. 352:151–158.PubMedCrossRefGoogle Scholar
  25. Flohe, L., Loschen, G., Günzler, W. A., and Eichele, E., 1972. Glutathione peroxidase. V. The kinetic mechanism, Hoppe-Seylers Z. Physiol. Chem. 353:987–999.PubMedCrossRefGoogle Scholar
  26. Flohe, L., Günzler, W. A., and Schock, H. H., 1973. Glutathione peroxidase: A selenoenzyme, FEBS Lett. 32:132–134.PubMedCrossRefGoogle Scholar
  27. Flohe, L., Günzler, A., and Loschen, G., 1979. The glutathione peroxidase reaction: A key to understand the selenium requirement of mammals, in Khrasch, N., Trace Metals in Health and Disease, Raven Press, New York, pp. 263–286.Google Scholar
  28. Forstrom, J. W., Zakowski, J. J., and Tappel, A. L., 1978. Identification of the catalytic site of rat liver glutathione peroxidase, Biochemistry 17:2639–2644.PubMedCrossRefGoogle Scholar
  29. Fredga, A., 1972, Organic selenium chemistry, Ann. N.Y. Acad. Sci. 192:1–9.PubMedCrossRefGoogle Scholar
  30. Ganther, H. E., and Baumann, C. A., 1962. Selenium metabolism. II. Effects of diet, arsenic, and cadmium, J. Nutr. 77:210–216.PubMedGoogle Scholar
  31. Goldman, P., Alberts, A. W., and Vagelos, P. R., 1961. Requirement for a malonyl CoA-CO2 exchange reaction in long chain but not short chain fatty acid synthesis in Clostridium kluvveri, Biochem. Biophys. Res. Commun. 5:280–285.PubMedCrossRefGoogle Scholar
  32. Günzler, W. A., Vergin, H., Müller, I., and Flohe, L., 1972. Glutathione-peroxidase. VI. Die reaktion der glutathione peroxidase mit verschiedenen hydroperoxiden, Hoppe-Seylers Z. Physiol. Chem. 353:1001–1004.PubMedCrossRefGoogle Scholar
  33. Hafeman, D. G., Sunde, R. A., and Hoekstra, W. G., 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 104:580–587.PubMedGoogle Scholar
  34. Hartmanis, M., 1980. A new selenoprotein from Clostridium Bluyveri that copurifies with thiolase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:1772.Google Scholar
  35. Hedegaard, J., Falcone, G., and Calabro, S., 1963. Incorporation of selenium into analogs of sulfurated amino acids in Candida albicans, Compt. Rend. Soc. Biol. 187:280–284.Google Scholar
  36. Hidiroglou, M., Heaney, D. P., and Jenkins, K. J., 1968. Metabolism of inorganic selenium in rumen bacteria, Can. J. Physiol. Pharmacol. 46:229–232.PubMedCrossRefGoogle Scholar
  37. Hoffman, J. L., and McConnell, K. P., 1974, The presence of 4-selenouridine in Escherichia coli tRNA, Biochim. Biophys. Acta 366:109–113.PubMedCrossRefGoogle Scholar
  38. Holmberg, N. J., 1968, Purification and properties of glutathione peroxidase from bovine lens, Exp. Eye Res. 7:570–580.PubMedCrossRefGoogle Scholar
  39. Horn, M. J., and Jones, D. B., 1941. Isolation from Astragalus pectinatus of a crystalline amino acid complex containing selenium and sulfur, J. Biol. Chem. 139:649–660.Google Scholar
  40. Huber, R. E., and Criddle, R. S., 1967b. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs, Arch. Biochem. Biophys. 122:164–173.PubMedCrossRefGoogle Scholar
  41. Huber, R. E. and Criddle, R. S., 1967a. The isolation and properties of beta-galactosidase from Escherichia coli grown on sodium selenite, Biochim. Biophys. Acta 141;587–599.PubMedCrossRefGoogle Scholar
  42. Imhoff, D., and Andreesen, J. R., 1979, Nicotinic acid hydroxylase from Clostridium barkeri: Selenium-dependent formation of active enzyme, FEMS Microbiol. Lett. 5:155–158.CrossRefGoogle Scholar
  43. Jackby, W. B., 1977. The glutathione S-transferases: A group of multifunctional detoxification proteins, Adv. Enzymol. 46:383–414.Google Scholar
  44. Jenkins, K. J., and Hidiroglou, M., 1967. The incorporation of 75-Se-selenite into dystrophogenic pasture grass. The chemical nature of the seleno compounds formed and their availability to young ovine, Can. J. Biochem. 45:1027–1039.PubMedCrossRefGoogle Scholar
  45. Jones, J. B., Dilworth, G. L., and Stadtman, T. C., 1979. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii, Arch. Biochem. Biophys. 195:255–260.PubMedCrossRefGoogle Scholar
  46. Kerdel-Vegas, F., Wagner, F., Russell, P. B., Grant, N. H., Alburn, H. E., Clark, D. E., and Miller, J. A., 1965, Structure of the pharmacologically active factor in the seeds of Lecythis ollaria, Nature 205:1186–1187.CrossRefGoogle Scholar
  47. Klug, H. L., and Froom, J. D., 1965. Identification of dimethyl selenide as a respiratory product from rats administered sodium selenite, S. Dakota Acad. Sci. Proc. 64:247.Google Scholar
  48. Ladenstein, R., and Wendel, A., 1976. Crystallographic data of the selenoenzyme glutathione peroxidase, J. Mol. Biol. 104:877–882.PubMedCrossRefGoogle Scholar
  49. Lam, K. W., Riegl, M., and Olson, R. E., 1961. Biosynthesis of selenocoenzyme A in the rat, Federation Proc. 20:229.Google Scholar
  50. Lawrence, R. A., and Burk, R. F., 1976. Glutathione peroxidase activity in selenium deficient rat liver, Biochem. Biophys. Res. Commun. 71:952–958.PubMedCrossRefGoogle Scholar
  51. Lester, R. L., and DeMoss, J. A., 1971. Effect of molybdate and selenite on formate and nitrate metabolism in Escherichia coli, J. Bacteriol. 105:1006–1014.PubMedGoogle Scholar
  52. Little, C., 1972. Steroid hydroperoxides as substrates for glutathione peroxidase, Biochim. Biophys. Acta 284:375–381.PubMedCrossRefGoogle Scholar
  53. Little, C. and O’Brien, P. J., 1968. An intracellular GSH-peroxidase with a lipid peroxide substrate, Biochem. Biophys. Res. Commun. 31:145–150.PubMedCrossRefGoogle Scholar
  54. Ljungdahl, L. G., and Andreesen, J. R., 1975. Tungsten, A component of active formate dehydrogenase of Clostridium thermoaceticum, FEBS Lett. 54:279–282.PubMedCrossRefGoogle Scholar
  55. Massey, V., 1959. The microestimation of succinate and the extinction coefficient of cytochrome C., Biochim. Biophys. Acta. 34:255–256.PubMedCrossRefGoogle Scholar
  56. McCollach, R. J., Hamilton, J. W., and Brown, S. K., 1963. An apparent seleniferous leaf wax from stanleya bipinnata. Biochem. Biophys. Res. Commun. 11:7–13.CrossRefGoogle Scholar
  57. McConnell, K. P., and Portman, O. W., 1952. Excretion of dimethyl selenide by the rat, J. Biol. Chem. 195:277–282.PubMedGoogle Scholar
  58. McConnell, K. P., and Wabnitz, C. H., 1957. Studies on the fixation of radioselenium in proteins, J. Biol. Chem. 226:765–776.PubMedGoogle Scholar
  59. McConnell, K. P., Kraemer, A. E., and Roth, D. M., 1959. Presence of selenium-75 in the mercapturic acid fraction of dog urine, J. Biol. Chem. 234:2932–2934.Google Scholar
  60. McConnell, K. P., Burton, R. M., Kute, T., and Higgins, T., 1979. Selenoproteins from testis cytosol, Biochim. Biophys Acta 588:113–119.PubMedCrossRefGoogle Scholar
  61. McCready, R. G. L., Campbell, J. N., and Payne, J. I., 1966. Selenite reduction by Salmonella heidelberg, Can. J. Microbiol. 12:703–714.PubMedCrossRefGoogle Scholar
  62. Mills, G. C., and Randall, H. P., 1958. Hemoglobin catabolism. II. The protection of hemoglobin from oxidative breakdown in the intact erythrocyte, J. Biol. Chem. 232:589–598.PubMedGoogle Scholar
  63. Nakamura, W., Hosoda, S., and Hayashi, K., 1974. Purification and properties of rat liver glutathione peroxidase, Biochim. Biophys. Acta 358:251–261.CrossRefGoogle Scholar
  64. Nigam, S. N., and McConnell, W. B., 1972. Isolation and identification of L-cystathionine and L-selenocystathionine from the foliage of Astragalus pectinatus, Phytochemistry 11:377–380.CrossRefGoogle Scholar
  65. Nigam, S. N., and McConnell, W. B., 1976. Isolation and identification of two isomeric glutamylselenocystathionines from the seeds of Astragalus pectinalus. Biochim. Biophys. Acta 437:116–121.PubMedCrossRefGoogle Scholar
  66. Nugteren, D. H., and Hazelhof, E., 1973. Isolation and properties of intermediates in prostaglandin biosynthesis, Biochim. Biophys. Acta 326:448–461.PubMedCrossRefGoogle Scholar
  67. Oh, S. H., Ganther, H. E., and Hoekstra, W. G., 1974. Selenium as a component of glutathione peroxidase isolated from ovine erythrocytes, Biochemistry 13:1825–1829.PubMedCrossRefGoogle Scholar
  68. Palmer, I. S., Fischer, D. D., Halverson, A. W., and Olson, O. E., 1969. Identification of a major selenium excretory product in rat urine, Biochim. Biophys. Acta 177:336–342.PubMedCrossRefGoogle Scholar
  69. Parsons, D. F., Williams, G. R., Thompson, W., Wilson, D., and Chance, B., 1967. Improvements in the procedure for purification of mitochrondrial outer and inner membrane. Comparison of the outer membrane with smooth endoplasmatic reticulum, in Mitochondrial Structure and Compartmentation, E. Quagliariello, S. Papa, E. C. Slater, and J. M. Tager (eds.) Adriatica Editrice, Bari, Italy, pp. 29–70.Google Scholar
  70. Paulson, G. D., Baumann, C. A., and Pope, A. L., 1968. Metabolism of 75Se-selenite, 75Seselenite, 75Se-selenomethionine and 35S-sulfate by rumen microorganisms in vitro, J. Anim. Sci. 27:497–503.PubMedGoogle Scholar
  71. Pedersen, N. D., Whanger, P. D., Weswig, P. H., and Muth, O. H., 1972. Selenium binding proteins in tissues of normal and selenium responsive myopathic lambs, Bioinorg. Chem. 2:33–45.CrossRefGoogle Scholar
  72. Peterson, P. J., and Butler, G. W., 1962. The uptake and assimilation of selenite by higher plants, Aust. J. Biol. Sci. 15:126–146.Google Scholar
  73. Peterson, P. J., and Butler, G. W., 1967. Significance of selenocystathionine in an Australian selenium-accumulating plant, Neptunia amplexicaulis, Nature 213:599:600.CrossRefGoogle Scholar
  74. Pinsent, J., 1954. The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria, Biochem. J. 57:10–16.PubMedGoogle Scholar
  75. Prohaska, J. R., and Ganther, H. E. 1976. Association with GSH: organic hydroperoxide oxidoreductase activity with glutathione S-transferse A activity in testicular cytosol, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36:1094.Google Scholar
  76. Prohaska, J. R., Oh, S. H., Hoekstra, W. G., and Ganther, H. E., 1977. Glutathione peroxidase: Inhibition by cyanide and release of selenium, Biochem. Biophys. Res. Commun. 75:64–71.CrossRefGoogle Scholar
  77. Reamer, D. C., and Zollar, W. H., 1980. Selenium biomethylation products from soil and sewage sludge, Science 208:500–502.PubMedCrossRefGoogle Scholar
  78. Reichard, P., 1978. From deoxynucleotides to DNA synthesis, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37:9–14.Google Scholar
  79. Rosenfeld, I., 1961. Biosynthesis of seleno-compounds from inorganic selenium by sheep, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20:10.Google Scholar
  80. Rotruck, J. T., Hoekstra, W. G., and Pope, A. L., 1971. Glucose dependent protection by dietary selenium against haemolysis of rat erythrocytes in vitro, Nature (London) New Biol. 231:223–224.Google Scholar
  81. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., and Hoefstra, W. G., 1973. Selenium: Biochemical role as a component of glutathione peroxidase, Science 179:588–590.PubMedCrossRefGoogle Scholar
  82. Saelinger, D. A., Hoffman, J. L., and McConnell, K. P., 1972. Biosynthesis of selenobases in tRNA by Escherichia coli, J. Mol. Biol. 69:9–17.PubMedCrossRefGoogle Scholar
  83. Shum, A. C., and Murphy, J. C., 1972. Effects of selenium compounds on formate metabolism and coicidence of selenium-75 incorporation and formic dehydrogenase activity in cell-free preparation of Escherichia coli, J. Bacteriol. 110:447–449.PubMedGoogle Scholar
  84. Smith, A. G., Harland, W. A., and Brooks, C. J. W., 1973. Glutathione peroxidase in human and animal aorta, Steroids Lipids Res. 4:122–128.PubMedGoogle Scholar
  85. Smith, A. L., 1949. M. S. thesis, South Dakota State College of Agriculture and Mechanical Arts, Brookings, South Dakota, cited by A. Shrift, 1961. Biochemical interrelations between selenium and sulfur in plants and microorganisms, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20:695–702.Google Scholar
  86. Spare, C. G., and Virtanen, A. I., 1964. Occurrence of free selenium-containing amino acids in onion (Allium cepa), Acta Chem. Scand. 18:280–282.CrossRefGoogle Scholar
  87. Stadtman, T. C., Elliott, P., and Tiemann, J., 1958. Studies on the enzymic reduction of amino acids, J. Biol. Chem. 231:961–973.PubMedGoogle Scholar
  88. Stadtman, T. C., 1974a. Selenium biochemistry, Science 183:915–922.PubMedCrossRefGoogle Scholar
  89. Stadtman, T. C., 1974b. Composition and some properties of the selenoprotein of glycine reductase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33:1291.Google Scholar
  90. Stadtman, T. C., 1979. Some selenium-dependent biochemical processes, Adv. Enzymol. 48:1–28.PubMedGoogle Scholar
  91. Stadtman, T. C., 1980. Selenium-dependent enzymes, Ann. Rev. Biochem. 49:93–110.PubMedCrossRefGoogle Scholar
  92. Stewart, J. M., Nigam, S. N., and McConnell, W. B., 1974. Metabolism of Na2 75SeO4 in horeseradish: Formation of Selenosinigrin, Can. J. Biochem. 52:144–145.PubMedCrossRefGoogle Scholar
  93. Strittmatter, P., and Ozols, J., 1966. The restricted tryptic cleavage of cytochrome b5, J. Biol. Chem. 241:4787–4792.PubMedGoogle Scholar
  94. Trelease, S. F., DiSomma, A. A., and Jacobs, A. L., 1960. Seleno-amino acid found in Astragalus bisulcatus, Science 132:618.PubMedCrossRefGoogle Scholar
  95. Turner, D. C., and Stadtman, T. C., 1973. Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein, Arch. Biochem. Biophys. 154:366–381.PubMedCrossRefGoogle Scholar
  96. Tuve, T., and Williams, H. H., 1961. Metabolism of selenium by Escherichia coli: Biosyn-thesis of selenomethionine, J. Biol. Chem. 236:597–601.PubMedGoogle Scholar
  97. Venugopolan, V., 1980. Influence of growth conditions on glycine reductase of Clostridium sporogenes, J. Bacteriol. 141:386–388.Google Scholar
  98. Virupaksha, T. K., and Shrift, A., 1963. Biosynthesis of selenocystathionine from selenate in Stanleya pinnata, Biochim. Biophys. Acta 74:791–793.PubMedCrossRefGoogle Scholar
  99. Virupaksha, T. K., and Shrift, A., 1965. Biochemical differences between selenium accumulator and non-accumulator Astragalus species, Biochim. Biophys. Acta 107:69–80.PubMedCrossRefGoogle Scholar
  100. Virupaksha, T. K., Shrift, A., and Tarrer, H., 1966. Biochemical differences between selenium accumulator and non-accumulator Astragalus species, Biochim. Biophys Acta. 130:45–55.CrossRefGoogle Scholar
  101. Wagner, R., and Andreesen, J. R., 1979. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici, Arch. Microbiol. 121:255–260.PubMedCrossRefGoogle Scholar
  102. Wagner, R., and Andeesen, J. R., 1980. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum, Arch. Microbiol. 121:255–260.CrossRefGoogle Scholar
  103. Weiss, K. F., Ayres, J. C., and Kraft, A. A., 1965. Inhibitory action of selenite on Escherichia coli, Proteus vulgaris and Salmonella thompson, J. Bact. 90:857–862.PubMedGoogle Scholar
  104. Wendel, A., and Kerner, B., 1977. Modification of red cell glutathione peroxidase by alkyl halides, Hoppe-Seyler’s Z. Physiol. Chem. 358:1296.Google Scholar
  105. Whanger, P. D., Pedersen, N. D., and Weswig, P. H., 1973. Selenium proteins in ovine tissues. II. Spectral properties of a 10,000 molecular weight selenium protein, Biochem. Biophys. Res. Commun. 55:1031–1035.CrossRefGoogle Scholar
  106. Woolfolk, C. A., and Whiteley, H. R., 1962, Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus, J. Bacteriol. 84:647–658.PubMedGoogle Scholar
  107. Young, P. A., and Kaiser, I. I., 1979. Isolation and partial characterization of transfer RNAs from Astragalus bisculcatus, Plant Physiol. 63:511–517.PubMedCrossRefGoogle Scholar
  108. Zakowski, J. J., and Tappel, A. L., 1978. Purification and properties of rat liver mitochondrial glutathione peroxidase, Biochim. Biophys. Acta 526:65–76.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Raymond J. Shamberger
    • 1
  1. 1.The Cleveland Clinic FoundationClevelandUSA

Personalised recommendations