Advertisement

The Nature of the Genetic Mechanism

  • Lawrence S. Dillon

Abstract

Now that the preceding chapters have viewed the actions of the molecular genetic mechanism through the development, differentiation, and functioning of mature organisms, several observations concerning the nature of the actual genetic processes become obvious that remained obscure or completely concealed when only the macromolecular (Dillon, 1978a) and cellular levels (Dillon, 1981) had been examined. But, as becomes evident in the following discussion, even at those lower levels of biological organization, some important features had actually been disclosed in those analyses but in too intangible form to be expressed in words. In a sense, then, this closing chapter of the present study is designed to serve as a summary for the entire trilogy.

Keywords

tRNA Gene Genetic Mechanism Intergenic Spacer Globin Gene Nascent Transcript 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aufderheide, K. J., Frankel, J., and Williams, N. E. 1980. Formation and positioning of surface- related structures in protozoa. Microbiol. Rev. 44: 252–302.PubMedGoogle Scholar
  2. Baltimore, D. 1981. Somatic mutation gains its place among the generators of diversity. Cell 26: 295–296.PubMedGoogle Scholar
  3. Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J. 1980. The primary structure of the human e-globin gene. Cell 21: 621–626.PubMedGoogle Scholar
  4. Barrell, B. G., Seidman, J. G., Guthrie, C. and McClain, W. H. 1974. The nucleotide sequence of a precursor to serine and proline tRNA’s. Proc. Natl. Acad. Sci. USA 71: 413–416.PubMedGoogle Scholar
  5. Bechmann, H., Haid, A., Schweyen, R. J., Mathews, S., and Kaudewitz, F. 1981. Expression of the “split gene” COB in yeast mtDNA. J. Biol. Chem. 256: 3525–3531.PubMedGoogle Scholar
  6. Bernard, O., Hozumi, N., and Tonegawa, S. 1978. Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell 15: 1133–1144.PubMedGoogle Scholar
  7. Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180.PubMedGoogle Scholar
  8. Bigelow, S., Hough, R., and Rechsteiner, M. 1981. The selective degradation of injected proteins occurs principally in the cytosol rather than in lysosomes. Cell 25: 83–93.PubMedGoogle Scholar
  9. Bohnert, H. J., Priesel, A. J., Crouse, E. J., Gordon, K., Herrmann, R. G., Steinmetz, A., Mubumbila, M., Keller, M., Burkard, G., and Weil, J. H. 1979. Presence of a tRNA gene in the spacer sequence between the 16S and 23S rRNA genes of spinach chloroplast genes. FEBS Lett. 103: 52–56.PubMedGoogle Scholar
  10. Boissel, J. P., Wajcman, H., and Labie, D. 1980. Hemoglobins of an amphibia, the neotenous Ambystoma mexicanum. Eur. J. Biochem. 103: 613–621.PubMedGoogle Scholar
  11. Bothwell, A. L. M., Paskind, M., Raph M., Imanishi-Kari, T., Rajewsky, K., and Baltimore, D. 1981. Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a y2a variable region. Cell 24: 625 - 637.PubMedGoogle Scholar
  12. Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S. 1978. A complete immunoglobulin gene is created by somatic recombination. Cell 15: 1–14.PubMedGoogle Scholar
  13. Breathnach, R., Benoist, C., O’Hare, K., Gannon, F., and Chambon, P. 1978. Ovalbumin gene: Evidence for a leader sequence in mRNA and DNA sequence at the exon-intron boundaries. Proc. Natl. Acad. Sci. USA 75: 4853–4857.PubMedGoogle Scholar
  14. Calvin, M. 1956. Chemical evolution and the origin of life. Am. Sci. 44: 248–263.Google Scholar
  15. Calvin, M. 1969. Chemical Evolution: Molecular Evolution towards the Origin of Living Systems on the Earth and Elsewhere, London, Oxford University Press.Google Scholar
  16. Calvin, M. 1975. Chemical evolution. Am. Sci. 63: 1969–1977.Google Scholar
  17. Catterall, J. F., O’Malley, B. W., Robertson, M. A., Staden, R., Tanaka, Y., and Brownlee, G. G. 1978. Nucleotide sequence homology at 12 intron-exon junctions in the chick ovalbumin gene. Nature (London) 275: 510–513.Google Scholar
  18. Chapman, B. S., Tobin, A. J., and Hood, L. E. 1981. Complete amino acid sequence of the major early embryonic 3-like globin in chickens. J. Biol. Chem. 256: 5524–5531.PubMedGoogle Scholar
  19. Chauvet, J. P., and Acher, R. 1972. Phylogeny of hemoglobins: (3 chain of frog (Rana esculenta) hemoglobin. Biochemistry 11: 916–927.PubMedGoogle Scholar
  20. Clarkson, S. G., Birnstiel, M. L., and Serra, V. 1973. Reiterated tRNA genes of Xenopus laevis. J. Mol. Biol. 79: 391–410.PubMedGoogle Scholar
  21. Cleary, M. L., Schon, E. A., and Lingrel, J. B. 1981. Two related pseudogenes are the result of a gene duplication in the goat 3-globin locus. Cell 26: 181–190.PubMedGoogle Scholar
  22. Clegg, J. B., and Gagnon, J. 1981. Structure of the £ chain of human embryonic hemoglobin. Proc. Natl. Acad. Sci. USA 78: 6076–6080.PubMedGoogle Scholar
  23. Colby, D., Leboy, P. S., and Guthrie, C. 1981. Yeast tRNA precursor mutated at a splice junction is correctly processed in vivo. Proc. Natl. Acad. Sci. USA 78: 415–419.PubMedGoogle Scholar
  24. Cory, S., and Adams, J. M. 1980. Deletions are associated with somatic rearrangement of immunoglobulin heavy chain genes. Cell 19: 37–51.PubMedGoogle Scholar
  25. Cory, S., Adams, J. M., and Kemp, D. J. 1980. Somatic rearrangements forming active immunoglobulin u-genes in B and T lymphoid cell lines. Proc. Natl. Acad. Sci. USA 77: 4943–4947.PubMedGoogle Scholar
  26. Crews, S., Griffin, J., Huang, H., Calame, K., and Hood, L. 1981. A single VJI gene segmentGoogle Scholar
  27. encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody. Cell 25: 59–66.Google Scholar
  28. DeFranco, D., Schmidt, O., and Soil, D. 1980. Two control regions for eukaryotic tRNA gene transcription. Proc. Natl. Acad. Sci. USA 77: 3365–368.PubMedGoogle Scholar
  29. Delaney, A., Dunn, R., Grigliatti, T. A., Tener, G. M., Kaufman, T. C., and Suzuki, D. T. 1976. Quantitation and localization of tRNA genes of Drosophila melanogaster. Fed. Proc. 35: 1676.Google Scholar
  30. Dickinson, D. G., and Baker, R. F. 1978. Evidence for translocation of DNA sequences during sea urchin embryogenesis. Proc. Natl. Acad. Sci. USA 75: 5627–5630.PubMedGoogle Scholar
  31. Diesseroth, A., Nienhuis, A., Turner, P., Velez, R., Anderson, W. F., Ruddle, F., Lawrence, J., Creagan, R., and Kucherlapati, R. 1977. Localization of the human a-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay. Cell 12: 205–218.Google Scholar
  32. Dillon, L. S. 1962. Comparative cytology and the evolution of life. Evolution 16: 102–117.Google Scholar
  33. Dillon, L. S. 1963. A reclassification of the major groups of organisms based upon comparative cytology. Syst. Zool. 12: 71–82.Google Scholar
  34. Dillon, L. S. 1966. The life cycle of the species: An extension of current concepts. Syst. Zool. 15: 112–126.Google Scholar
  35. Dillon, L. S. 1970. Speciation and changing environments. Am. Zool. 10: 27–39.PubMedGoogle Scholar
  36. Dillon, L. S. 1973. Origins of the genetic code. Bot. Rev. 39: 301–345.Google Scholar
  37. Dillon, L. S. 1978a. The Genetic Mechanism and the Origin of Life, New York, Plenum Press.Google Scholar
  38. Dillon, L. S. 1978b. Evolution: Concepts and Consequences, St. Louis, Mosby.Google Scholar
  39. Dillon, L. S. 1981. Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press.Google Scholar
  40. Dolan, M., Sugarman, B. J., Dodgson, J. B., and Engel, J. D. 1981. Chromosomal arrangement of the chicken 3-type globin genes. Cell 24: 669–677.PubMedGoogle Scholar
  41. Duester, G., Campen, R. K., and Holmes, W. M. 1981. Nucleotide sequence of an Escherichia coli tRNA (Leu 1) operon and identification of the transcription promoter signal. Nucleic Acids Res. 9: 2121–2129.PubMedGoogle Scholar
  42. Early, P., and Hood, L. 1981. Allelic exclusion and nonproductive immunoglobulin gene rear-rangements. Cell 24: 1–3.PubMedGoogle Scholar
  43. Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J. 1980. The structure and evolution of the human 3-globin gene family. Cell 21: 653–668.PubMedGoogle Scholar
  44. Etcheverry, T., Colby, D., and Guthrie, C. 1979. A precursor to a minor species of yeast tRNASer contains an intervening sequence. Cell 18: 11–26.PubMedGoogle Scholar
  45. Flavell, R. A., Kooter, J. M., DeBoer, E., Little, P. F. R., and Williamson, R. 1978. Analysis of the 3-8-globin gene loci in normal and Hb Lepore DNA: Direct determination of gene linkage and intergene distance. Cell 15: 25–41.PubMedGoogle Scholar
  46. Foldi, J., Cohen-Sola, M., Valentin, C., Blouquit, Y., Hollan, S. R., and Rosa, J. 1980. The human a-globin gene: The protein products of the duplicated genes are identical. Eur. J. Biochem. 109: 463–470.PubMedGoogle Scholar
  47. Fox, S. W. 1980. Metabolic microspheres: Origins and evolution. Naturwissenschaften 67: 378–383.PubMedGoogle Scholar
  48. Fox, S. W., and Nakashima, T. 1980. The assembly and properties of protobiological structures: The beginnings of cellular peptide synthesis. BioSystems 12: 155–166.PubMedGoogle Scholar
  49. Fox, T. D., and Leaver, C. J. 1981. The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26: 315–323.PubMedGoogle Scholar
  50. Fritsch, E. F., Lawn, R. M., and Maniatis, T. 1980. Molecular cloning and characterization of the human (3-like globin gene cluster. Cell 19: 959–972.PubMedGoogle Scholar
  51. Gallwitz, D., and Sures, I. 1980. Structure of a split gene: Complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77: 2546–2550.PubMedGoogle Scholar
  52. Gearhart, P. J., Johnson, N. D., Douglas, R., and Hood, L. 1981. IgG antibodies to phosphoryl- choline exhibit more diversity than their IgM counterparts. Nature (London) 291: 29–34.Google Scholar
  53. Gershenfeld, H. K., Tsukamoto, A., Weissman, I. L., and Joho, R. 1981. Somatic diversification is required to generate the V genes of MOPC 511 and MOPC 167 myeloma proteins. Proc. Natl. Acad. Sci. USA 78: 7674–7678.PubMedGoogle Scholar
  54. Ghysen, A., and Celis, J. E. 1974. Joint transcription of two tRNAyr genes from£. coli. Nature (London) 249: 418–421.Google Scholar
  55. Gilbert, W. 1981. DNA sequencing and gene structure. Science 214: 1305–1312.PubMedGoogle Scholar
  56. Go, M. 1981. Correlations of DNA exonic regions with protein structural units in hemoglobin. Nature (London) 291: 90–92.Google Scholar
  57. Gorini, L. 1970. Informational suppression. Annu. Rev. Genet. 4: 107–134.PubMedGoogle Scholar
  58. Gough, N. M., and Bernard, O. 1981. Sequences of the joining region genes for immunoglobulin heavy chains and their role in generation of antibody diversity. Proc. Natl. Acad. Sci. USA 78: 509–513.PubMedGoogle Scholar
  59. Gould, S. J. 1980. Ontogeny and Phytogeny, Cambridge, Mass., Belknap Press.Google Scholar
  60. Gray, M. W., and Spencer, D. F. 1981. Is wheat mitochondrial 5S ribosomal RNA prokaryotic in nature? Nucleic Acids Res. 9: 3523–3529.PubMedGoogle Scholar
  61. Grigliatti, T. A., White, B. N., Tener, G. M., Kaufman, T. C., and Suzuki, D. T. 1974. The localization of transfer RNAsys genes from Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 71: 3527–3531.PubMedGoogle Scholar
  62. Grosveld, G. C., Shewmaker, C. K., Jat, P., and Flavell, R. A. 1981. Localization of DNA sequences necessary for transcription of the rabbit 3-globin gene in vitro. Cell 25: 215–226.PubMedGoogle Scholar
  63. Gruss, P., Efstratiadis, A., Karathanasis, S., Konig, M., and Khoury, G. 1981. Synthesis of stable unspliced mRNA from an intronless simian virus 40-rat preproinsulin gene recombinant. Proc. Natl. Acad. Sci. USA 78: 6091–6095.PubMedGoogle Scholar
  64. Hardison, R. C., Butler, E. T., Lacy, E., Maniatis, T., Rosenthal, N., and Efstratiadis, A. 1979. The structure and transcription of four linked rabbit 3-like globin genes. Cell 18: 1285–1297.PubMedGoogle Scholar
  65. Heckman, J. E., Sarnoff, J., Alzner-DeWeerd, B., Yin, S., and RajBhandary, U.L. 1980. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNA’s. Proc. Natl. Acad. Sci. USA 77: 3159–3163.PubMedGoogle Scholar
  66. Heintz, N., Zernik, M., and Roeder, R. G. 1981. The structure of the human histone genes: Clustered but not tandemly repeated. Cell 24: 661–668.PubMedGoogle Scholar
  67. Henseon, P. 1978. The presence of single stranded regions in mammalian DNA. J. Mol. Biol. 119: 487–506.Google Scholar
  68. Hodgson, G. W., and Ponnamperuma, C. A. 1968. Prebiological porphyrin synthesis: Porphyrins from electric discharge in methane, ammonia, and water vapor. Proc. Natl. Acad. Sci. USA 59: 22–28.PubMedGoogle Scholar
  69. Hurrell, J. G. R., and Leach, S. J. 1977. The amino acid sequence of soybean leghaemoglobin c2. FEBS Lett. 80: 23–26.PubMedGoogle Scholar
  70. Inoue, S. 1953. Polarization optical studies of the mitotic spindle. Chromosoma 5: 487–500.PubMedGoogle Scholar
  71. Jahn, C. L., Hutchison, C. A., Phillips, S. J., Weaver, S., Haigwood, N. L., Voliva, C. F., and Edgell, M. H. 1980. DNA sequence organization of the /3-globin complex in the BALB/c mouse. Cell 21: 159–168.PubMedGoogle Scholar
  72. Jensen, E. O., Paludan, K., Hyldig-Nielsen, J. J., Jorgensen, P., and Marcker, K. A. 1981. The structure of a chromosomal leghemoglobin gene from soybean. Nature (London) 291: 677–679.Google Scholar
  73. Johnson, J. D., Ogden, R., Johnson, P., Abelson, J., Dembeck, P., and Itakura, K. 1980. Transcription and processing of a yeast tRNA gene containing a modified intervening sequence. Proc. Natl. Acad. Sci. USA 77: 2561–2568.Google Scholar
  74. Knapp, G., Beckmann, J. S., Johnson, P. F., Fuhrman, S. A., and Abelson, J. 1978. Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14: 221–236.PubMedGoogle Scholar
  75. Knapp, G., Ogden, R. C., Peebles, C. L., and Abelson, J. 1979. Splicing of yeast tRNA precur¬sors: Structure of the reaction intermediates. Cell 18: 37–45.PubMedGoogle Scholar
  76. Koch, W., Edwards, K., and Kossel, H. 1981. Sequencing of the 16 S-23 S spacer in a ribosomal RNA operon of the Zea mays chloroplast DNA reveals two split tRNA genes. Cell 25: 205–213.Google Scholar
  77. Konkel, D. A., Tilghman, S. M., and Leder, P. 1978. The sequence of the mouse /3-globin major gene: Homologies in capping, splicing and poly(A) sites. Cell 15: 1125–1132.PubMedGoogle Scholar
  78. Konkel, D. A., Maizel, J. V., and Leder, P. 1979. The evolution and sequence comparison of two recently diverged mouse chromosomal /3-globin genes. Cell 18: 865–873.PubMedGoogle Scholar
  79. Lacy, E., and Maniatis, T. 1980. The nucleotide sequence of a rabbit /3-globin pseudogene. Cell 21: 545–553.PubMedGoogle Scholar
  80. Lacy, E., Hardison, R. C., Quon, D., and Maniatis, T. 1979. The linkage arrangement of four rabbit /3-like globin genes. Cell 18: 1273–1283.PubMedGoogle Scholar
  81. Lalanne, J. L., Bregegere, F., Delarbre, C., Gachelin, G., and Kourilsky, P. 1982. Comparison of nucleotide sequences of mRNAs belonging to the mouse H-2 multigene family. Nucl. Acids Res. 10: 1039–1049.PubMedGoogle Scholar
  82. Landy, A., Foeller, C., and Ross, W. 1974. DNA fragments carrying genes for tRNXiyr. Nature (London) 249: 738–742.Google Scholar
  83. Lauer, J., Shen, C. K. J., and Maniatis, T. 1980. The chromosomal arrangement of human a-like globin genes: Sequence homology and a-globin gene deletions. Cell 20: 119–130.PubMedGoogle Scholar
  84. Leder, P., Hanse, J. N., Konkel, D., Leder, A., Nishioka, Y., and Talkington, C. 1980. Mouse globin system: A functional and evolutionary analysis. Science 209: 1336–1342.PubMedGoogle Scholar
  85. Lewin, B. 1980. Alternatives for splicing an intron-coded protein. Cell 22: 645–646.PubMedGoogle Scholar
  86. Lewin, R. 1981a. Biggest challenge since the double helix. Science 212: 28–32.PubMedGoogle Scholar
  87. Lewin, R. 1981b. How conversational are genes? Science 212: 313–315.Google Scholar
  88. Lewin, R. 1981c. Evolutionary history written in globin genes. Science 214: 426–429.PubMedGoogle Scholar
  89. Liebhaber, S. A., Goossens, M., and Kan, Y. W. 1981. Homology and concerted evolution at the al and a2 loci of human a-globin. Nature (London) 290: 26–29.Google Scholar
  90. Lohmann, K., and Schubert, L. 1980. Qualitative changes in DNA indicating differential DNA replication during early embryogenesis of the newt Triturus vulgaris. J. Embryol. Exp. Mor- phol. 57: 61–70.Google Scholar
  91. Maki, R., Kearney, J., Paige, C., and Tonegawa, S. 1980. Immunoglobulin gene rearrangement in immature B cells. Science 209: 1366–1369.PubMedGoogle Scholar
  92. Masters, C. J., and Winzor, D. J. 1981. Physiochemical evidence against the concept of an interaction between aldolase and glyceraldehyde-3-phosphate dehydrogenase. Arch. Biochem. Biophys. 209: 185–190.PubMedGoogle Scholar
  93. Mazzara, G. P., Plunkett, G., and McClain, W. H. 1981. DNA sequence of the transfer RNA region of bacteriophage T4: Implications for transfer RNA synthesis. Proc. Natl. Acad. Sci. USA 78: 889–892.PubMedGoogle Scholar
  94. Michelson, A. M., and Orkin, S. M. 1980. The 3’ untranslated regions of the duplicated human a-globin genes are unexpectedly divergent. Cell 22: 371–377.PubMedGoogle Scholar
  95. Miller, S. L. 1953. A production of amino acids under possible primitive earth conditions. Science 117: 528–529.PubMedGoogle Scholar
  96. Morgan, E. A., Ikemura, T., and Nomura, M. 1977. Identification of spacer tRNA genes in individual ribosomal RNA transcription units of Escherichia coli. Proc. Natl. Acad. Sci. USA 74: 2710–2714.PubMedGoogle Scholar
  97. Naveh-Many, T., and Cedar, H. 1981. Active gene sequences are undermethylated. Proc. Natl. Acad. Sci. USA 78: 4246–4250.PubMedGoogle Scholar
  98. Nishioka, Y., and Leder, P. 1979. The complete sequence of a chromosomal mouse a-globin gene reveals elements conserved throughout vertebrate evolution. Cell 18: 875–882.PubMedGoogle Scholar
  99. Nishioka, Y., Leder, A., and Leder, P. 1980. Unusual a-globin-like gene that has lost both globin intervening sequences. Proc. Natl. Acad. Sci. USA 77: 2806–2809.PubMedGoogle Scholar
  100. Nute, P. E. 1974. Multiple hemoglobin a-chain loci in monkeys, apes, and man. Ann. N.Y. Acad. Sci. 241: 39–60.PubMedGoogle Scholar
  101. Nute, P. E. 1981. Hemoglobin a-gene duplication in macaques: Individual Macaca nemestrina with three structurally different a chains. Arch. Biochem. Biophys. 206: 346–352.PubMedGoogle Scholar
  102. O’Farrell, P. Z., Cordell, B., Valenzuela, P., Rutter, W. J., and Goodman, H. M. 1978. Structure and processing of yeast precursor tRNAs containing intervening sequences. Nature (London) 274: 438–445.Google Scholar
  103. Ohno, S. 1980. Origin of intervening sequences within mammalian genes and the universal signal for their removal. Differentiation 17: 1–15.PubMedGoogle Scholar
  104. Olson, M. V., Montgomery, D. L., Hopper, A. K., Page, G. S., Horodyski, F., and Hall, B. D. 1977. Molecular characterisation of the tyrosine tRNA genes of yeast. Nature (London) 267: 639–641.Google Scholar
  105. Orkin, S. H., and Goff, S. C. 1981. The duplicated human a-globin genes: Their relative expression as measured by RNA analysis. Cell 24: 345–351.PubMedGoogle Scholar
  106. Peebles, C. L., Ogden, R. C., Knapp, G., and Abelson, J. 1979. Splicing of yeast tRNA precursors: A two stage reaction. Cell 18: 27–35.PubMedGoogle Scholar
  107. Peffley, D. M., and Sogin, M. L. 1981. A putative tRNATrp gene cloned from Dictyostelium discoideum: Its nucleotide sequence and association with repetitive DNA. Biochemistry 20: 4015–4021.PubMedGoogle Scholar
  108. Pribnow, D. 1975. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc. Natl. Acad. Sci. USA 72: 784–788.PubMedGoogle Scholar
  109. Proudfoot, N. J., and Maniatis, T. 1980. The structure of a human a-globin pseudogene and its relationship to a-globin gene duplication. Cell 21: 537–554.PubMedGoogle Scholar
  110. Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L., and Maniatis, T. 1980. Structure and in vitro transcription of human globin genes. Science 209: 1329–1336.PubMedGoogle Scholar
  111. Quincey, R. V., and Wilson, S. H. 1969. The utilization of genes for rRNA, 5S RNA, and tRNA in liver cells of adult rats. Proc. Natl. Acad. Sci. USA 64: 981–988.PubMedGoogle Scholar
  112. Rogers, J., and Wall, R. 1980. A mechanism for RNA splicing. Proc. Natl. Acad. Sci. USA 77: 1877–1879.PubMedGoogle Scholar
  113. Ross, J., and Knecht, D. A. 1978. Precursors of a and globin messenger RNAs. J. Mol. Biol. 119: 1–20.PubMedGoogle Scholar
  114. Sanderson, K. E. 1967. Revised linkage map of Salmonella typhimurium. Bacteriol. Rev. 31: 354–372.PubMedGoogle Scholar
  115. Sassone-Corsi, P., Corden, J., Kedinger, C., and Chambon, P. 1981. Promotion of specific in vitro transcription by excised “TATA” box sequences inserted in a foreign nucleotide environment. Nucleic Acids Res. 9: 3941–3958.PubMedGoogle Scholar
  116. Schmelzer, C., Haid, A., Grosch, G., Schweyen, R. J., and Kaudewitz, F. 1981. Pathways of transcript splicing in yeast mitochondria. J. Biol. Chem. 256: 7610–7619.PubMedGoogle Scholar
  117. Schwarz, Z., Kossel, H., Schwarz, E., and Bogorad, L. 1981. A gene coding for tRNAVal is located near 5’ terminus of 16S rRNA gene in Zea mays chloroplast genome. Proc. Natl. Acad. Sci. USA 78: 4748–4752.PubMedGoogle Scholar
  118. Schweizer, E., MacKechnie, C., and Halvorson, H. O. 1969. The redundancy of the ribosomal and transfer RNA genes in Saccharomyces cerevisiae. J. Mol. Biol. 40: 261–277.PubMedGoogle Scholar
  119. Sekiya, T., and Nishimura, S. 1979. Sequence of the gene for isoleucine tRNAx at the surrounding region in a ribosomal RNA operon of E. coli. Nucleic Acids Res. 6: 575–592.Google Scholar
  120. Sekiya, T., Gait, M. J., Noris, K., Rammamoorthy, B., and Khorana, H. G. 1976. The nucleotide sequence in the promoter region for the gene for an Escherichia coli tyrosine transfer RNA. J. Biol. Chem. 251: 4481–4489.PubMedGoogle Scholar
  121. Sekiya, T., Mori, M., Takahashi, N., and Nishimura, S. 1980. Sequence of the distal tRNAf gene and the transcription termination signal in the E. coli ribosomal RNA operon rrn F (or G). Nucleic Acids Res. 8: 3809–3827.Google Scholar
  122. Sekiya, T., Kuchino, Y., and Nishimura, S. 1981. Mammalian tRNA genes: Nucleotide sequence of rat genes for t RNA Asp, t RNA Gly, and t RNA Glu. Nucleic Acids Res. 9: 2239–2250.PubMedGoogle Scholar
  123. Sharp, S., DeFranco, D,, Dingermann, T., Farrell, P., and Soil, D. 1981. Internal control regions for transcription of eukaryotic tRNA genes. Proc. Natl. Acad. Sci. USA 78: 6657–6661.PubMedGoogle Scholar
  124. Shen, C. K. J., and Maniatis, T. 1980. Tissue-specific DNA methylation in a cluster of rabbit (3- like globin genes. Proc. Natl. Acad. Sci. USA 77: 6634–6638.PubMedGoogle Scholar
  125. Slightom, J. L., Blechl, A. E., and Smithies, O. 1980. Human fetal Gy- and Ay-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638.PubMedGoogle Scholar
  126. Smith, G. H., and Vonderhaar, B. K. 1981. Functional differentiation in mouse mammary gland epithelium is attained through DNA synthesis, inconsequent of mitosis. Dev. Biol. 88: 167–179.PubMedGoogle Scholar
  127. Snyder, M., Hirsh, J., and Davidson, N. 1981. The cuticle genes ofDrosophila: A developmentally regulated gene cluster. Cell 25: 165–177.PubMedGoogle Scholar
  128. Spencer, D. F., Bonen, L., and Gray, M. W. 1981. Primary sequence of wheat mitochondrial 5S ribosomal RNA: Functional and evolutionary implications. Biochemistry 20: 4022–4029.PubMedGoogle Scholar
  129. Spohr, G., Reith, W., and Sures, I. 1981. Organization and sequence analysis of a cluster of repetitive DNA elements from Xenopus laevis. J. Mol. Biol. 151: 573–592.PubMedGoogle Scholar
  130. Spritz, R. A., deRiel, J. K., Forget, B. G., and Weissman, S. M. 1980. Complete nucleotide sequence of the human 8-globin gene. Cell 21: 639–646.PubMedGoogle Scholar
  131. Squires, C., Konrad, B., Kirschbaum, J., and Carbon, J. 1973. Three adjacent tRNA genes in E. coli. Proc. Natl. Acad. Sci. USA 70: 438–441.Google Scholar
  132. Steinmetz, M., and Zachau, H. G. 1980. Two rearranged immunoglobulin kappa light chain genes in one mouse myeloma. Nucleic Acids Res. 8: 1693–1707.PubMedGoogle Scholar
  133. Stephenson, E. C., Erba, H. P., and Gall, J. G. 1981. Histone gene clusters of the newt Notophthalmus are separated by long tracts of satellite DNA. Cell 24: 639–647.PubMedGoogle Scholar
  134. Tanksley, S. D., Zamir, D., and Rick, C. M. 1981. Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicum esculentum. Science 213: 453–455.PubMedGoogle Scholar
  135. Valbuena, O., Marcu, K. B., Weigert, M., and Perry, R. P. 1978. Multiplicity of germline genes specifying a group of related mouse K chains with implications for the generation of immunoglobulin diversity. Nature (London) 276: 780–784.Google Scholar
  136. Valenzuela, P., Venegas, A., Weinberg, F., Bishop, R., and Rutter, W. J. 1978. Structure of yeast phenylalanine-tRNA genes: An intervening DNA segment within the region coding for the tRNA. Proc. Natl. Acad. Sci. USA 75: 190–194.PubMedGoogle Scholar
  137. Van Arsdell, S. W., Denison, R. A., Bernstein, L. B., Weiner, A. M., Manser, T., and Geste- land, R. F. 1981. Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26: 11–17.PubMedGoogle Scholar
  138. van Ooyen, A, van den Berg, J., Mantei, N., and Weissman, C. 1979. Comparisons of total sequence of a cloned rabbit /3-globin gene and its flanking regions with a homologous mouse sequence. Science 206: 337–344.PubMedGoogle Scholar
  139. Villeponteau, B., and Martinson, H. 1981. Isolation and characterization of the complete chicken /3-globin gene region: Frequent deletion of adult /3-globin genes in A. Nucleic Acids Res. 9: 3731–3746.PubMedGoogle Scholar
  140. Weber, A. L., and Miller, S. L. 1981. Reasons for the occurrence of the twenty coded protein amino acids. J. Mol. Evol. 17: 273–284.PubMedGoogle Scholar
  141. Weigert, M. G., and Riblet, R. 1976. Genetic control of antibody variable regions. Cold Spring Harbor Symp. Quant. Biol. 41: 837–846.Google Scholar
  142. Weigert, M. G., Cesari, H. M., Yonkovich, S. J., and Cohn, M. 1970. Variability in the lambda light chain sequences of mouse antibody. Nature (London) 228: 1045–1047.Google Scholar
  143. Weigert, M. G., Gatmaitan, L., Loh, E., Schilling, J., and Hood, L. 1978. Rearrangement of genetic information may produce immunoglobulin diversity. Nature (London) 276: 785–790.Google Scholar
  144. Wilson, J. T., deRiel, J. K., Forget, B. G., Marotta, C. A., and Weissman, S. M. 1977. Nucleotide sequence of 3’ untranslated portion of human alpha globin mRNA. Nucleic Acids Res. 4: 2353–2368.PubMedGoogle Scholar
  145. Wilson, J. T., Wilson, L. B., Reddy, V. B., Cavallesco, C., Ghosh, P. K., deRiel, J. K., Forget, B. G., and Weissman, S. M. 1980. Nucleotide sequence of the coding portion of a human a globin mRNA. J. Biol. Chem. 255: 2807–2815.PubMedGoogle Scholar
  146. Wortzman, M. S., and Baker, R. F. 1980. Specific sequences within single-stranded regions in the sea urchin embryo genome. Biochim. Biophys. Acta 609: 84–96.PubMedGoogle Scholar
  147. Wortzman, M. S., and Baker, R. F. 1981. Two classes of single-stranded regions in DNA from sea urchin embryos. Science 211: 588–590.PubMedGoogle Scholar
  148. Yao, M. C., and Yao, C. H. 1981. Repeated hexanucleotide C—C—C—C—A—A is present near free ends of macronuclear DNA oiTetrahymena. Proc. Natl. Acad. Sci. USA 78: 7436–7439.PubMedGoogle Scholar
  149. Yao, M. C., Blackburn, E., and Gall, J. 1981. Tandemly repeated C—C—C—C—A—A hexa¬nucleotide oiTetrahymena rDNA is present elsewhere in the genome and may be related to the alteration of the somatic genome. J. Cell Biol. 90: 515–520.PubMedGoogle Scholar
  150. Yao, M. C. 1982. Elimination of specific DNA sequences from the somatic nucleus of the ciliate Tetrahymena. J. Cell Biol. 92: 783–789.PubMedGoogle Scholar
  151. Young, J. R., Donelson, J. E., Majiwa, P. A. O., Shapiro, S. Z., and Williams, R. O. 1982. Analysis of genomic rearrangements associated with two variable antigen genes of Trypanosoma. Nucl. Acids Res. 10: 803–809.PubMedGoogle Scholar
  152. Zimmer, E. H., Martin, S., Beverly, S. M., Kan, Y. W., and Wilson, A. C. 1980. Rapid duplication and loss of genes coding for the a chains of hemoglobin. Proc. Natl. Acad. Sci. USA 77: 2158–2162.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations