Gene Expression Changes in Cyclic Functions

  • Lawrence S. Dillon


Cyclic changes in behavior or activity on the part of eukaryotes in general, correlated to the oscillations in light, temperature, and other variables that characterize the planet on which they live, have become an extremely important area for investigation during the post-1950 period. Circadian and photoperiodic changes related to the day-night pattern have proven especially fertile fields, but infradian (several cycles per day), lunar, and circannual ones have also been productive. A large majority of the investigations have been descriptive of physiological state variations at the organismic level and thus provide only indirect clues that alterations in gene function govern the activities; nevertheless, such studies do serve to reveal the great abundance and wide divergence in character of biorhythms, or chronobiological phenomena, as cyclic behavior has become termed. Nearly all the important life functions have proven to be rhythmic in character, including cell division (Scheving and Pauly, 1973), diapause, energy metabolism, reproduction, sleeping and waking, feeding, types of nutrients consumed, and even the manner of death in man as suicide, coronary disease, and stroke (Kripke, 1974; Reinberg, 1974; Rutledge, 1974; Gorski et al., 1975; Sachsenmaier, 1976; Wever, 1979). But many of lesser importance, such as otolith formation in fish (Barkman, 1978; Dunkelberger et al., 1980; Mugiya et al., 1981), and auditory brain stem response in man (Marshall and Donchin, 1981), also have proven to be rhythmic in occurrence on a daily basis.


Circadian Rhythm Pineal Gland Dark Phase Tyrosine Aminotransferase Chenopodium Rubrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, W. H., Takiguchi, T., and Smith, R. T. 1971. Effect of age upon primary alloantigen recognition by mouse spleen cells. J. Immunol. 107: 1357–1362.PubMedGoogle Scholar
  2. Albertsson, P. A., and Baird, G. D. 1962. Counter-current distribution of cells. Exp. Cell Res. 28: 296–322.PubMedGoogle Scholar
  3. Albrecht, E. D. 1981. Effect of aging and adrenocorticotropin on adrenal A5-3/3-hydroxysteroid dehydrogenase activity in male rats. Exp. Aging Res. 7: 11–15.PubMedGoogle Scholar
  4. Albrecht, E. D., Koos, R. D., and Wehrenberg, W. B. 1977. Aging and adrenal A5-3ß-hydroxy- steroid dehydrogenase in female mice. J. Endocrinol. 73: 193–194.PubMedGoogle Scholar
  5. Arutyunyan, G. S., Mashkovskii, M. D., and Roshchina, L. F. 1964. Pharmacological properties of melatonin. Fed. Proc. 23: T1330–T1332.Google Scholar
  6. Aschoff, J. 1955. Jahresperiodik der Fortpflanzung bei Warmblütern. Stud. Gen. 8: 742–776.Google Scholar
  7. Axelrod, J. A., and Weissbach, H. 1961. Purification and properties of hydroxy indole-0-methyl- transferase. J. Biol. Chem. 236: 211–213.PubMedGoogle Scholar
  8. Axelrod, J. A., and Zatz, M. 1977. The /3-adrenergic receptor and the regulation of circadian rhythms in the pineal gland. In: Litwack, G., ed., Biochemical Actions of Hormones, New York, Academic Press, Vol. 4, pp. 249–268.Google Scholar
  9. Bakke, J. L., and Lawrence, N. 1965. Circadian periodicity in thyroid stimulating hormone titer in the rat hypophysis and serum. Metabolism 14: 841–843.Google Scholar
  10. Balthazart, J., and Hendrick, J. 1976. Annual variation in reproductive behavior, testosterone, and plasma FSH levels in the Rouen duck Anas platyrhynchos. Gen. Comp. Endocrinol. 28: 171–183.PubMedGoogle Scholar
  11. Barchas, J., DaCosta, F., and Spector, S. 1967. Acute pharmacology of melatonin. Nature (London) 214: 919–920.Google Scholar
  12. Barkman, R. C. 1978. The use of otolith growth rings to age young Atlantic silversides, Menidia menidia. Trans. Am. Fish. Soc. 107: 790–792.Google Scholar
  13. Barnett, A. 1969. Cell division: A second circadian clock system in Paramecium multimicronu- cleatum. Science 164: 1417–1419.PubMedGoogle Scholar
  14. Bates, R. W., Riddle, O., and Lahr, E. L. 1937. Mechanism of the antigonadal action of prolactin in adult pigeons. Am. J. Physiol. 119: 610–614.Google Scholar
  15. Bayliss, M. T., and Ali, S. Y. 1978. Age-related changes in the composition and structure of human articular-cartilage proteoglycans. Biochem. J. 176: 683–693.PubMedGoogle Scholar
  16. Beaupain, R., Icard, C., and Macieira-Coelho, A. 1980. Changes in DNA alkali-sensitive sites during senescence and establishment of fibroblasts in vitro. Biochim. Biophys. Acta 606: 251–261.PubMedGoogle Scholar
  17. Benoit, J. 1936. Facteurs externes et internes de l’activité sexuelle. Bull. Biol. Fr. Belg. 70: 487–533.Google Scholar
  18. Berger, J. 1980. Circannual rhythms in the blood picture of laboratory rats. Folia Haematol. Leipzig 107: 54–60.Google Scholar
  19. Berger, J. 1981. Seasonal variations in reticulocyte counts in blood of laboratory mice and rats. Z. Versuchstierkd. 23: 8 - 12.PubMedGoogle Scholar
  20. Berthold, P., and Querner, U. 1981. Genetic basis of migratory behavior in European warblers. Science 212: 77–79.PubMedGoogle Scholar
  21. Berumen, L., and Macieira-Coelho, A. 1977. Changes in albumin uptake during the lifespan of human fibroblasts in vitro. Mech. Aging Dev. 6: 165–172.PubMedGoogle Scholar
  22. Bianchi, D. E. 1964. An endogenous circadian rhythm in Neurospora crassa. J. Gen. Microbiol. 35: 437–445.PubMedGoogle Scholar
  23. Binkley, S. A. 1974. Pineal and melatonin: Circadian rhythms and body temperatures of sparrows. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 582–585.Google Scholar
  24. Birks, E. K., and Ewing, R. D. 1981a. Characterization of hydroxyindole-O-methyltransferase (HIOMT) from the pineal gland of chinook salmon (Oncorhynchus tshawytscha). Gen. Comp. Endocrinol. 43: 269–276.PubMedGoogle Scholar
  25. Birks, E. K., and Ewing, R. D. 1981b. Photoperiod effects on hydroxyindole-O-methyltransferase activity in the pineal gland of chinook salmon (Oncorhynchus tshawytscha). Gen. Comp. Endocrinol. 43: 277–283.PubMedGoogle Scholar
  26. Bolla, R., and Brot, N. 1975. Age dependent changes in enzymes involved in macromolecular synthesis in Turbatrix aceti. Arch. Biochem. Biophys. 169: 227–236.PubMedGoogle Scholar
  27. Bortels, H. 1959. Synchronbeobachtungen über Beziehungen physikalischchemischer und mikrobiologischer Renktionen zu Luftdruckänderungen in und bei Braunschweig. Arch. Meteorol. Geophys. Bioklimatol. Ser. B9: 464–486.Google Scholar
  28. Boyd, E. 1932. The weight of the thymus gland in health and disease. Am. J. Dis. Child. 43: 1162–1214.Google Scholar
  29. Bradbury, E. M., Inglis, R. J., and Matthews, H. R. 1974. Control of cell division by very lysine rich histone (Fl) phosphorylation. Nature (London) 247: 257–261.Google Scholar
  30. Brady, J. 1969. How are insect circadian rhythms controlled? Nature (London) 223: 781–784.Google Scholar
  31. Breaux, C. B., and Meier, A. H. 1971. Diurnal periodicity in the effectiveness of prolactin to inhibit metamorphosis in Rana pipiens tadpoles. Am. Midi. Nat. 85: 267–271.Google Scholar
  32. Brody, S., and Martins, S. A. 1976. Circadian rhythms in Neurospora: The role of unsaturated fatty acids. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 245–246 (abstract).Google Scholar
  33. Brown, A. J. P., and Hardman, N. 1980. Utilization of polyadenylated mRNA during growth and starvation in Physarum polycephalum. Eur. J. Biochem. 110: 413–420.PubMedGoogle Scholar
  34. Brown, A. J. P., and Hardman, N. 1981. The effect of age on the properties of poly(A)-containing mRNA in Physarum polycephalum. J. Gen. Microbiol. 122: 143–150.PubMedGoogle Scholar
  35. Brown, F. A. 1978. Interrelations between biological rhythms and clocks. In: Samis, H. V., and Capobianco, S., eds., Aging and Biological Rhythms, New York, Plenum Press, pp. 215–234.Google Scholar
  36. Bruce, V. G., 1970. The biological clock in Chlamydomonas reinhardi. J. Protozool. 17: 328–334.Google Scholar
  37. Bruce, V. G., 1972. Mutants of the biological clock in Chlamydomonas reinhardi. Genetics 70: 537–548.PubMedGoogle Scholar
  38. Bruce, V. G., 1974. Recombinants between clock mutants of Chlamydomonas reinhardi. Genetics 77: 221–230.PubMedGoogle Scholar
  39. Bruce, V. G., 1976. Clock mutants. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 339–351.Google Scholar
  40. Bruce, V. G., and Pittendrigh, C. S. 1957. Resetting the euglena clock with a single light stimulus. Am. Nat. 92: 295–306.Google Scholar
  41. Bünning, E. 1936. Die endonome Tagesrhymik als Grundlage der photoperiodischen Reaktion. Ber. Dtsch. Bot. Ges. 54: 590–607.Google Scholar
  42. Bünning, E. 1973. The Physiological Clock, revised 3rd ed., Berlin, Springer-Verlag.Google Scholar
  43. Bunt, A. H. 1971. Enzymatic digestion of synaptic ribbons in amphibian retinal photoreceptors. Brain Res. 25: 571–577.PubMedGoogle Scholar
  44. Burnet, F. M. 1970. Immunological Surveillance, Elmsford, N.Y., Pergamon Press.Google Scholar
  45. Burns, E. R., Scheving, L. E., and Tsai, T. 1972. Circadian rhythm in uptake of tritiated thymidine by kidney, parotid, and duodenum of isoproterenol-treated mice. Science 175: 71–73.PubMedGoogle Scholar
  46. Cahn, R. D., Kaplan, N. O., Levine, L., and Zwilling, E. 1962. Nature and development of lactic dehydrogenases. Science 136: 962–969.PubMedGoogle Scholar
  47. Campbell, R. R., Etches, R. J., and Leatherland, J. F. 1981. Seasonal changes in plasma prolactin concentration and carcass lipid levels in the lesser snow goose (Anser caerulescens caerulescens). Comp. Biochem. Physiol. 68A: 653–657.Google Scholar
  48. Chadwick, C. S. 1940. Identity of prolactin with water drive factor in Triturus viridescens. Proc. Soc. Exp. Biol. Med. 45: 335–337.Google Scholar
  49. Chan, A. C., Ng, S. K. C., and Walter, I. G. 1976. Reduced DNA repair during differentiation of a myogenic cell line. J. Cell Biol. 70: 685–691.PubMedGoogle Scholar
  50. Chetsanga, C. J., and Liskiwskyi, M. 1979. Decrease in specific activity of heart and muscle aldolase in old mice. Int. J. Biochem. 8: 753–756.Google Scholar
  51. Chetsanga, C. J., Tuttle, M., Jacoboni, A., and Johnson, C. 1977. Age-associated structural alterations in senescent mouse brain DNA. Biochim. Biophys. Acta 474: 180–187.PubMedGoogle Scholar
  52. Cleaver, J. E. 1977. Nucleosome structure controls rates of excision repair in DNA of human cells. Nature (London) 270: 451–453.Google Scholar
  53. Comfort, A. 1979. The Biology of Senescence, 3rd ed., Amsterdam, Elsevier.Google Scholar
  54. Cremer, T., Werdan, K., Stevenson, A. F. G., Lehner, K., and Messerschmidt, O. 1981. Aging in vitro and D-glucose uptake kinetics of diploid human fibroblasts. J. Cell Physiol. 106: 99–108.PubMedGoogle Scholar
  55. Cuello, A. C., and Tramezzani, J. H. 1969. The epiphysis cerebri of the Weddell seal: Its remarkable size and glandular pattern. Gen. Comp. Endocrinol. 12: 154–164.PubMedGoogle Scholar
  56. Cunningham, A. J. 1976. Self-tolerance maintained by active suppressor mechanisms. Transplant. Rev. 31: 23–43.PubMedGoogle Scholar
  57. Cusick, F. J., and Cole, H. 1959. An improved method of breeding golden hamsters. Tex. Rep. Biol. Med. 17: 201–204.PubMedGoogle Scholar
  58. Deitzner, G. F., Kempf, O., Fischer, S., and Wagner, E. 1974. Rhythmic control of enzymes involved in the tricarboxylic-acid cycle and the oxidative pentose-phosphate pathway in Chen- opodium rubrum L. Planta 117: 29–41.Google Scholar
  59. Dell’Oreo, R. T., and Anderson, L. E. 1981. Unscheduled DNA synthesis in human diploid cells of different donor ages. Cell Biol. Int. Rep. 5: 359–364.Google Scholar
  60. Diaz-Jouanen, E., Strickland, R. G., and Williams, R. C. 1975. Studies of human lymphocytes in the newborn and the aged. Am. J. Med. 58: 620’628.Google Scholar
  61. Dieckmann, C., and Brody, S. 1980. Circadian rhythms in Neurospora crassa: Oligomycin-resis- tant mutations affect periodicity. Science 207: 896–898.Google Scholar
  62. Dikstein, S. 1971. Stimulability, adenosine triphosphatases and their control by cellular redox processes. Naturwissenschaften 58: 439–443.PubMedGoogle Scholar
  63. Dillon, L. S. 1978. The Genetic Mechanism and the Origin of Life, New York, Plenum Press.Google Scholar
  64. Dillon, L. S. 1981. Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press.Google Scholar
  65. Donham, R. S. 1979. Annual cycle of plasma LH and sex hormones in male and female mallards. Biol. Reprod. 21: 1273–1285.PubMedGoogle Scholar
  66. Donofrio, R. J., and Reiter, R. J. 1972. Depressed pituitary prolactin levels in blinded anosmic female rats: Role of the pineal gland. J. Reprod. Fertil. 31: 159–162.PubMedGoogle Scholar
  67. Dons, R. F., Corash, L. M., and Gorden, P. 1981. The insulin receptor is an age-dependent integral component of the human erythrocyte membrane. J. Biol. Chem. 256: 2982–2987.PubMedGoogle Scholar
  68. Dunkelberger, D. G., Dean, J. M., and Watabe, N. 1980. The ultrastructure of the otolithic membrane and otolith in the juvenile mummichog, Fundulus heteroclitus. J. Morphol. 163: 367–377.Google Scholar
  69. Dunn, G. R., and Stevens, L. C. 1970. Determination of sex of teratomas derived from early mouse embryos. J. Natl. Cancer Inst. 44: 99–105.PubMedGoogle Scholar
  70. Dusseau, J., and Meier, A. H. 1971. Diurnal and seasonal variation of plasma adrenal steroid hormone in the white-throated sparrow, Zonotrichia albicollis. Gen. Comp. Endocrinol. 16: 399–408.PubMedGoogle Scholar
  71. Edmunds, L. N., and Adams, K. J. 1981. Clocked cell cycle clocks. Science 211: 1002–1013.PubMedGoogle Scholar
  72. Edmunds, L. N., Sulzman, F. M., and Walther, W. G. 1974. Circadian oscillations in enzyme activity in Euglena and their relation to the circadian rhythm of cell division. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 61–66.Google Scholar
  73. Eguchi, E., Waterman, T. H., and Akiyama, J. 1973. Localization of the violet and yellow receptor cells in the crayfish retinula. J. Gen. Physiol. 62: 355–374.PubMedGoogle Scholar
  74. Ellison, N., Weller, J. L., and Klein, D. C. 1972. Development of a circadian rhythm in the activity of pineal serotonin N-acetyltransferase. J. Neurochem. 19: 1335–1341.PubMedGoogle Scholar
  75. Esser, K., and Kuenen, R. 1967. Genetics of Fungi, Berlin, Springer-Verlag.Google Scholar
  76. Etkin, W., and Gona, A. G. 1967. Antagonism between prolactin and thyroid hormone in amphibian development. J. Exp. Zool. 165: 249–258.PubMedGoogle Scholar
  77. Evans, L. T., and King, R. W. 1969. Role of phytochrome in photoperiodic induction of Pharbitis nil. Z. Pflanzenphysiol. 60: 277–288.Google Scholar
  78. Farner, D. S. 1970. Predictive functions in the control of annual cycles. Environ. Res. 3: 119–131.PubMedGoogle Scholar
  79. Feldman, J. F., and Hoyle, M. N. 1973. Isolation of circadian clock mutants of Neurospora crassa. Genetics 75: 605–613.PubMedGoogle Scholar
  80. Feldman, J. F., and Hoyle, M. N. 1974. A direct comparison between circadian and non-circadian rhythms in Neurospora. Plant Physiol. 53: 928–930.PubMedGoogle Scholar
  81. Feldman, J. F., Hoyle, M. N., and Shelgren, J. 1973. Carcadian clock mutants of Neurospora crassa: Genetic and physiological characteristics. Genetics 74: S77–S78.Google Scholar
  82. Fellini, S. A., Pacifici, M., and Holtzer, H. 1981. Changes in the sulfated proteoglycans synthesized by “aging” chondrocytes, n. Organ-cultured vertebral columns. J. Biol. Chem. 256: 1038–1043.PubMedGoogle Scholar
  83. Fondeville, J. C., Borthwick, H. A., and Hendricks, S. D. 1966. Leaflet movement of Mimosa pudica L. indicative of phytochrome action. Planta 69: 357–364.Google Scholar
  84. Frosch, S., and Wagner, E. 1973. Endogenous rhythmicity and energy transduction. II. Phytochrome action and the conditioning of rhythmicity of adenylate kinase, NAD- and NADP- linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum by temperature and light intensity cycles during germination. Can. J. Bot 51: 1521–1528.Google Scholar
  85. Frosch, S., Wagner, E., and Cumming, E. G. 1973. Endogenous rhythmicity and energy transduction. I. Rhythmicity in adenylate kinase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum. Can. J. Bot. 51: 1355–1362.Google Scholar
  86. Fry, M., Loeb, L. A., and Martin, G. M. 1981. On the activity and fidelity of chromatin-associ- ated hepatic DNA polymerase-/3 in aging murine species of different life spans. J. Cell. Physiol. 106: 435–444.PubMedGoogle Scholar
  87. Fujimoto, M., Kanaya, A., Nakabou, Y., and Hagihira, H. 1978. Circadian rhythm in the ornithine decarboxylase activity of rat small intestine. J. Biochem. 83: 237–242.PubMedGoogle Scholar
  88. Gaston, S., and Menaker, M. 1968. Pineal function: The biological clock in the sparrow? Science 160: 1125–1127.PubMedGoogle Scholar
  89. Gaubatz, J., Ellis, M., and Chalkley, R. 1979. The structural organization of mouse chromatin as a function of age. Fed. Proc. 38: 1973–1978.PubMedGoogle Scholar
  90. Gerisch, G. 1976. Cyclic-AMP oscillation and signal transmission in aggregating Dictyostelium cells. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 433–440.Google Scholar
  91. Glick, D., Ferguson, R. B., Greenberg, L. I., and Halberg, F. 1961. Circadian studies on succinic dehydrogenase, pantothenate and biotin of rodent adrenal. Am. J. Physiol. 200: 811–814.PubMedGoogle Scholar
  92. Goldsmith, P. K., and Stetten, M. R. 1979. Different developmental changes in latency for two functions of a single membrane bound enzyme—Glucose-6-phosphate activities as a function of age. Biochim. Biophys. Acta 583: 133–147.PubMedGoogle Scholar
  93. Gorski, R. A., Mennin, S. P., and Kubo, K. 1975. The neural and hormonal bases of the reproductive cycle of the rat. In: Hedlund, L. W., Franz, J. M., and Kenny, A. D., eds., Biological Rhythms and Endocrine Function, New York, Plenum Press, pp. 115–153.Google Scholar
  94. Goss, R. J. 1980. Photoperiod control of antler cycles in deer. V. Reversed seasons. J. Exp. Zool. 211: 101–105.PubMedGoogle Scholar
  95. Grant, W. C. 1961. Special aspects of the metamorphic process—Second metamorphosis. Am. Zool. 1: 163–171.Google Scholar
  96. Grant, W. C., and Grant, J. A. 1958, Water drive studies on hypo-physectomized effects of Diemyctylus viridescens. Part 1. The role of lactogenic hormone. Biol. Bull. 114: 1–9.Google Scholar
  97. Gupta, S. K., and Rothstein, M. 1976. Phosphoglycerate kinase from young and old Turbatrix aceti. Biochim. Biophys. Acta 445: 632–644.PubMedGoogle Scholar
  98. Gwinner, E., Turek, F. W., and Smith, Z. D. 1971. Extraocular light perception in photoperiodic responses of the white-crowned sparrow (Zonotrichia leucophrys) and of the golden-crowned sparrow (Z. atricapilla). Z. Vgl. Physiol. 75: 323–331.Google Scholar
  99. Haase, E., Sharp, P. J., and Paulke, E. 1975a. Annual cycle of plasma luteinizing hormone con¬centrations in wild mallard drakes. J. Exp. Zool. 194: 553–558.PubMedGoogle Scholar
  100. Haase, E., Sharp. P. J., and Paulke, E. 1975b. Seasonal changes in plasma LH levels in domestic ducks. J. Reprod. Fertil. 44: 591–594.PubMedGoogle Scholar
  101. Hafner, G. S., Hammond-Soltis, G., and Tokarski, T. 1980. Diurnal changes of lysosome-related bodies in the crayfish photoreceptor cells. Cell Tissue Res. 206: 319–332.PubMedGoogle Scholar
  102. Halaban, R., and Hillman, W. S. 1974. Photoperiodic time measurement in a short-day-plant: Effects of the external medium. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 666–670.Google Scholar
  103. Halberg, F., Halberg, F., and Giese, A. 1974. Circannual biochemical and gonadal index rhythms of marine invertebrates: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 703–708.Google Scholar
  104. Harley, C. B., Pollard, J. W., Chamberlain, J. W., Stanners, C. P., and Goldstein, S. 1980. Protein synthetic errors do not increase during aging of cultured human fibroblasts. Proc. Natl. Acad. Sci. USA 77: 1885–1889.PubMedGoogle Scholar
  105. Harold, F. M. 1972. Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36: 172–230.PubMedGoogle Scholar
  106. Hart, R. W., and Modak, S. P. 1980. Aging and changes in genetic information. In: Oota, K., Makinodan, T., Iriki, M., and Baker, L. S., eds., Aging Phenomena: Relationships around Different Levels of Organization, New York, Plenum Press, pp. 123–137.Google Scholar
  107. Hart, R. W., and Setlow, R. B. 1974. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc. Natl. Acad. Sci. USA 71: 2169–2173.PubMedGoogle Scholar
  108. Hastings, J. W. 1959. Unicellular clocks. Annu. Rev. Microbiol. 13: 297–312.Google Scholar
  109. Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37: 614–636.PubMedGoogle Scholar
  110. Hayflick, L., and Moorhead, P. S. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25: 585–621.PubMedGoogle Scholar
  111. Hendricks, S. B., and Borthwick, H. A. 1967. The function of phytochrome in regulation of plant growth. Proc. Natl. Acad. Sci. USA 58: 2125–2130.PubMedGoogle Scholar
  112. Hirokawa, K., Hatakeyawa, S., and Sado, T. 1978. Xlth Int. Congr. Gerontol., Tokyo, Symp. Immune System p. 2.Google Scholar
  113. Hishikawa, Y., Cramer, H., and Kichlo, W. 1969. Natural and melatonin-induced sleep in young chickens—A behavioral and electrographic study. Exp. Brain Res. 7: 84–94.PubMedGoogle Scholar
  114. Hochberg, M. L., and Sargent, M. L. 1974. Rhythms of enzyme activity associated with circadian conidiation in Neurospora crassa. J. Bacteriol. 121: 1164–1175.Google Scholar
  115. Hogan, B. L. M. 1976. Changes in the behavior of teratocarcinoma cells cultivated in in vitro. Nature (London) 263: 136–137.Google Scholar
  116. Hsueh, A. J. W., Erickson, G. F., and Lu, K. H. 1979. Changes in uterine estrogen receptor and morphology in aging female rats. Biol. Reprod. 21: 793–800.PubMedGoogle Scholar
  117. Huang, H. H., Marshall, S., and Meites, J. 1976a. Capacity of old versus young female rats to secrete LH, FSH, and prolactin. Biol. Reprod. 14: 538–543.PubMedGoogle Scholar
  118. Huang, H. H., Steger, R. W., Bruni, J. F., and Meites, J. 1976b. Patterns of sex steroid and gonadotropin secretion in aging female rats. Endocrinology 103: 1855–1859.Google Scholar
  119. Hung, C. Y., Perkins, E. H., and Yang, W. K. 1975. Age-related refractoriness of PHA-induced lymphocyte transformation. Mech. Aging Dev. 4: 103–112.PubMedGoogle Scholar
  120. Illnerova, H. 1971. Effect of environmental lighting on serotonin rhythm in rat pineal gland during postnatal development. Life Sci. 10: 583–590.Google Scholar
  121. Ito, T., and Matsushima, S. 1968. Electron microscopic observations on the mouse pineal, with particular emphasis on its secretory nature. Arch. Histol. Jpn. 30: 1–15.PubMedGoogle Scholar
  122. Jacklet, J. W. 1969. Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164: 562–563.PubMedGoogle Scholar
  123. Jacklet, J. W. 1974. A circadian rhythm from a population of interacting neurons in the eye of Aplysia. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 67–71.Google Scholar
  124. Jacklet, J. W. 1981. Circadian timing by endogenous oscillators in the nervous system: Toward cellular mechanisms. Biol. Bull. 160: 199–227.Google Scholar
  125. Jackson, B. 1959. Time-associated variations of mitotic activity in livers of young rats. Anat. Ree. 134: 365–377.Google Scholar
  126. Jerebzoff, S. 1976. Metabolic steps involved in periodicity. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 193–213.Google Scholar
  127. Joenje, H., Frants, R. R., Arwert, F., and Eriksson, A. 1978. Specific activity of human erythrocyte superoxide dismutase as a function of a donor age: A brief note. Mech. Ageing Dev. 8: 265–267.PubMedGoogle Scholar
  128. Johansson, G. 1970. Partition of salts and their effects on partition of proteins in a dextran- poly(ethylene glycol)-water two-phase system. Biochim. Biophys. Acta 221: 387–390.PubMedGoogle Scholar
  129. Johnson, O. W. 1961. Reproductive cycle of the mallard duck. Condor 63: 351–364.Google Scholar
  130. Johnston, P. G., and Zucker, I. 1980. Photoperiodic regulation of reproductive development in white-footed mice (Peromyscus leucopus). Biol. Reprod. 22: 983–989.PubMedGoogle Scholar
  131. Joseph, M. M. 1974. Circadian systems in the hormonal regulation of amphibian metamorphosis. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 142–146.Google Scholar
  132. Kachi, T. 1979. Demonstration of circadian rhythm in granular vesicle number in pinealocytes of mice and the effect of light. J. Anat. 129: 603–614.PubMedGoogle Scholar
  133. Kachi, T., and Ito, T. 1977. Neural control of glycogen content and its diurnal rhythm in mouse pineal cell. Am. J. Physiol. 232: E584–E589.PubMedGoogle Scholar
  134. Kachi, T., Matsushima, S., and Ito, T. 1975. Postnatal observations on the dirunal rhythm and the light-responsiveness in the pineal glycogen content in mice. Anat. Ree. 183: 39–46.Google Scholar
  135. Kahan, B. W., and Ephrussi, B. 1970. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Natl. Cancer Inst. 44: 1015–1029.PubMedGoogle Scholar
  136. Kanungo, M. S. 1980. Biochemistry of Aging, New York, Academic Press.Google Scholar
  137. Kanungo, M. S., and Singh, S. N. 1965. Effect of age on the isozymes of lactic dehydrogenase of the heart and the brain of rat. Biochem. Biophys. Res. Commun. 21: 454–459.PubMedGoogle Scholar
  138. Karran, P., and Ormerod, M. G. 1973. Is the ability to repair damage to DNA related to the proliferative capacity of a cell? The rejoining of X-ray-produced strand breaks. Biochim. Biophys. Acta 299: 54–64.PubMedGoogle Scholar
  139. Kasal, C. A., Menaker, M., and Perez-Polo, J. R. 1979. Circadian clock in culture: N-acetyltrans- ferase activity of chick pineal gland oscillates in vitro. Science 203: 656–658.PubMedGoogle Scholar
  140. Kauffman, S. A., and Wille, J. J. 1976. Evidence that the mitotic “clock” in Physarum poly- cephalum is a limit cycle oscillator. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 421–431.Google Scholar
  141. Kavaliers, M. 1979. The pineal organ and circadian organization of teleost fish. Rev. Can. Biol. 38: 281–292.Google Scholar
  142. Kavaliers, M. 1980. Social groupings and circadian activity of the killifish, Fundulus heteroclitus. Biol. Bull. 158: 69–76.Google Scholar
  143. Kavaliers, M. 1981. Circadian organization in white suckers, Catostomus commersoni: The role of the pineal gland. Comp. Biochem. Physiol. 68A: 127–129.Google Scholar
  144. Kavaliers, M., and Ralph, C. L. 1980. Circadian organization of an animal lacking a pineal organ; the young American alligator, Alligator mississippiensis. J. Comp. Physiol. 139: 287–292.Google Scholar
  145. Kavaliers, M., Firth, B. T., and Ralph, C. L. 1980. Pineal control of the circadian rhythms of colour change in the killifish (Fundulus heteroclitus). Can. J. Zool. 58: 456–460.Google Scholar
  146. Kayser, C. and Petrovic, A. 1958. Role du cortex surrenalien dans le mechanisme du sommeil hi vernal. C. R. Soc. Biol. 152: 519–528.Google Scholar
  147. Kennaway, D. J., Obst, J. M., Dunstan, E. A., and Friesen, H. G. 1981. Ultradian and seasonal rhythms in plasma gonadotropins, prolactin, Cortisol, and testosterone in pinealectomized rams. Endocrinology 108: 639–646.PubMedGoogle Scholar
  148. Kennes, B., Hubert, C., Brohee, D., and Neve, P. 1981. Early biochemical events associated with lymphocyte activation in ageing. I. Evidence that Ca2+ dependent processes induced by PHA are impaired. Immunology 42: 119–126.PubMedGoogle Scholar
  149. King, J. R., and Farner, D. S. 1974. Biochronometry and bird migration: General prespective [sic!]. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 625–635.Google Scholar
  150. King, R. W. 1974. Photoperiodism and timing mechanisms in the control of flowering. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 659–665.Google Scholar
  151. King, T. S., and Dougherty, W. J. 1980. Neonatal development of circadian rhythm in “synaptic” ribbon numbers in the rat pinealocyte. Am. J. Anat. 157: 335–343.PubMedGoogle Scholar
  152. Kishimoto, S., Takahama, T., and Mizumachi, H. 1976. In vitro immune response to the 2,4,6- trinitrophenyl determinant in aged C57BL/6J mice: Changes in the humoral immune response to avidity for the TNP determinant and responsiveness to LPS effect with aging. J. Immunol. 116: 294–300.PubMedGoogle Scholar
  153. Klein, D. C., Namboodiri, M. A. A., and Auerbach, D. A. 1981. The melatonin rhythm generating system: Developmental aspects. Life Sci. 28: 1975–1986.PubMedGoogle Scholar
  154. Kolpakov, M. G., Kolaeva, S. G., and Polyak, M. G. 1974. Endogenous mechanisms for the synchronization of corticosteroid production and seasonal rhythms in hibernating mammals. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 136–137.Google Scholar
  155. Konopka, R. J., and Benzer, S. 1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 2112–2116.PubMedGoogle Scholar
  156. Korf, H. W., Liesner, R., Meissl, H., and Kirk, A. 1981. Pineal complex of the clawed toad, Xenopus laevis Daud.: Structure and function. Cell Tissue Res. 216: 113–130.PubMedGoogle Scholar
  157. Kripke, D. F. 1974. Ultradian rhythms and sleep: Introduction. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 475–477.Google Scholar
  158. Krooth, R. S., Darlington, G. A., and Velazques, I. A. A. 1968. The genetics of cultured mammalian cells. Annu. Rev. Genet. 2: 141–164.Google Scholar
  159. Kupila-Ahvenniemi, S., Pihakaski, S., and Pihakaski, K. 1979. Wintertime changes in the ultra- structure and metabolism of the microsporangiate strobili of the Scotch pine. Planta 144: 19–29.Google Scholar
  160. Kurtz, D. I., and Sinex, F. M. 1967. Age related differences in the association of brain DNA and nuclear protein. Biochim. Biophys. Acta 145: 840–842.PubMedGoogle Scholar
  161. Kurtz, D. I., Russell, A. R., and Sinex, F. M. 1974. Multiple peaks in the derivative melting curve of chromatin from animals of varying age. Mech. Ageing Dev. 3: 37–49.PubMedGoogle Scholar
  162. Kurumado, K., and Mori, W. 1977. A morphological study of the circadian cycle of the pineal gland of the rat. Cell Tissue Res. 182: 565–568.PubMedGoogle Scholar
  163. Laval-Martin, D. L., Shuch, D. J., and Edmunds, L. N. 1979. Cell cycle-related and endogenously controlled circadian photosynthetic rhythms in Euglena. Plant Physiol. 63: 495–502.PubMedGoogle Scholar
  164. Lu, K. H., Hopper, B. R., Vargo, T. M., and Yen, S. S. C. 1979. Chronological changes in sex steroid, gonadotropin and prolactin secretion in aging female rats displaying different reproductive states. Biol. Reprod. 21: 193–203.PubMedGoogle Scholar
  165. Lues, G. 1971. Die Feinstruktur der Zirbeldrüse normaler, trächtiger, und experimentell beeinflusster Meerschweinchen. Z. Zellforsch. Mikrosk. Anat. 114: 38–60.PubMedGoogle Scholar
  166. Lynch, H. J. 1971. Diurnal oscillations in pineal melatonin content. Life Sci. 10: 791 - 795.Google Scholar
  167. McBurney, M. W. 1976. Clonal lines of teratocarcinoma cells in vitro: Differentiation and cytogenetic characteristics. J. Cell. Physiol. 89: 441–456.PubMedGoogle Scholar
  168. MacGregor, R. 1974. Avian reproductive system: Daily variations in response to hormones. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 636–640.Google Scholar
  169. Mackay, I. R. 1972. Ageing and immunological functions in man. Gerontologia 18: 285–304.PubMedGoogle Scholar
  170. McMurry, L., and Hastings, J. W. 1972. No desynchronization among four circadian rhythms in the unicellular alga, Gonyaulax polyedra. Science 175: 1137–1139.PubMedGoogle Scholar
  171. Makinodan, T., and Adler, W. H. 1975. Effects of aging on the differentiation and proliferation potentials of cells of the immune system. Fed. Proc. 34: 153–158.PubMedGoogle Scholar
  172. Makinodan, T., Perkins, E. H., and Chen, M. G. 1971. Immunologic activity of the aged. Adv. Gerontol. Res. 3: 171–238.PubMedGoogle Scholar
  173. Marshall, A. J., and Williams, M. C. 1959. The pre-nuptial migration of the yellow wagtail (Motacilla flava) from latitude OWN. Proc. Zool. Soc. London 132: 313–320.Google Scholar
  174. Marshall, M. K., and Donchin, E. 1981. Circadian variation in the latency of brainstem responses and its relation to body temperature. Science 212: 356–358.PubMedGoogle Scholar
  175. Martens, C. L., and Sargent, M. C. 1974. Circadian rhythms of nucleic acid metabolism in Neu- rospora crassa. J. Bacteriol. 117: 1210–1215.PubMedGoogle Scholar
  176. Martin, D. D. 1974. Hormonal control of orientation in the white-throated sparrow, Zonotrichia albicollis. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 641–646.Google Scholar
  177. Martin, G. M. 1977. Cellular aging. Part I. Clonal senescence. Part II. Postreplicative cells. Am. J. Pathol. 89: 484–530.PubMedGoogle Scholar
  178. Martin, G. M., and Sprague, C. A. 1973. Symposium on in vitro studies related to atherogenesis: Life histories of hyperplastoid cell lines from aorta and skin. Exp. Mol. Pathol. 18: 125–141.PubMedGoogle Scholar
  179. Matsushima, S., and Reiter, R. J. 1975. Comparative ultrastructural studies on the pineal gland of rodents. In: Hess, M., ed., Ultrastructure of Endocrine and Reproductive Organs, New York, Wiley, pp. 335–356.Google Scholar
  180. Mattern, M. R., and Cerutti, P. 1975. Age-dependent excision repair of damaged thymidine from irradiated DNA by isolated nuclei from human fibroblasts. Nature (London) 254: 450–452.Google Scholar
  181. Matthews, H. R., Hardie, D. G., Inglis, R. J., and Bradbury, E. M. 1976. The molecular basis of control of mitotic cell division. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 395 - 408.Google Scholar
  182. Mays, L. L., Lawrence, A. E., Ho, R. W., and Ackley, S. 1979. Age-related changes in function of tRNA of rat livers. Fed. Proc. 38: 1984–1988.PubMedGoogle Scholar
  183. Meier, A. H. 1969a. Antigonadal effects of prolactin in the white-throated sparrow, Zonotrichia albicollis. Gen. Comp. Endocrinol. 13: 222–225.PubMedGoogle Scholar
  184. Meier, A. H. 1969b. Diurnal variations of metabolic responses to prolactin in lower vertebrates. Gen. Comp. Endocrinol. Suppl. 2: 55–62.Google Scholar
  185. Meier, A. H., and Davis, K. B. 1967. Diurnal variation of the fattening response to prolactin in the white-throated sparrow, Zonotrichia albicollis. Gen. Comp. Endocrinol. 8: 110–114.Google Scholar
  186. Meier, A. H., and Dusseau, J. W. 1968. Prolactin and the photoperiodic gonadal response in several avian species. Physiol. Zool. 41: 95–103.Google Scholar
  187. Meier, A. H., and Martin, D. D. 1971. Temporal synergism of corticosterone and prolactin controlling fat storage in the white-throated sparrow, Zonotrichia albicollis. Gen. Comp. Endocrinol. 17: 311–318.PubMedGoogle Scholar
  188. Meier, A. H., Farner, D. S., and King, J. R. 1965. A possible endocrine basis for migratory behavior in the white-crowned sparrow, Zonotrichia leucophrys gambelii. Anim. Behav. 13: 453–465.PubMedGoogle Scholar
  189. Meier, A. H., Burns, J. T., and Dusseau, J. W. 1969. Seasonal variations in the diurnal rhythm of pituitary prolactin content in the white-throated sparrow, Zonotrichia albicollis. Gen. Comp. Endocrinol. 12: 282–289.PubMedGoogle Scholar
  190. Meier, A. H., Garcia, L. E., and Joseph, M. M. 1971a. Corticosterone phases a circadian water- drive response to prolactin in the spotted newt, Diemyctylus viridescens. Biol. Bull. 141: 331–336.PubMedGoogle Scholar
  191. Meier, A. H., Martin, D. D., and MacGregor, R. 1971b. Temporal synergism of corticosterone and prolactin controlling gonadal growth in sparrows. Science 173: 1240–1242.PubMedGoogle Scholar
  192. Meier, A. H., Trobec, T. N., Joseph, M. M., and John, T. M. 1971c. Temporal synergism ofGoogle Scholar
  193. prolactin and adrenal steroids in the regulation of fat stores. Proc. Soc. Exp. Biol. Med. 137:408–415.Google Scholar
  194. Mergenhagen, D. 1976. Gene expression in its role in rhythms. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 353–360.Google Scholar
  195. Miller, J. K., Bolla, R., and Denckla, W. D. 1980. Age-associated changes in initiation of RNA synthesis in isolated rat liver nuclei. Biochem. J. 188: 55–60.PubMedGoogle Scholar
  196. Milo, G. E., and Hart, R. W. 1976. Age-related alterations in plasma membrane glycoprotein content and scheduled or unscheduled DNA synthesis. Arch. Biochem. Biophys. 176: 324–333.PubMedGoogle Scholar
  197. Mogler, R. K. H. 1958. Das Endokrine System des Syrischen Goldhamster unter Berücksichtigung des Natürlichen Winterschaläf. Z. Morph. Oekol. Tiere 47: 267–308.Google Scholar
  198. Mohan, C., and Radha, E. 1978. Circadian rhythms in the central cholinergic system in aging animals. Adv. Exp. Med. Biol. 108: 275–299.PubMedGoogle Scholar
  199. Moldave, K., Harris, J., Sabo, W., and Sadnik, I. 1979. Protein synthesis and aging: Studies with cell-free mammalian systems. Fed. Proc. 38: 1979–1983.PubMedGoogle Scholar
  200. Moore, R. Y., and Smith, R. A. 1971. Postnatal development of a norepinephrine response to light in the rat pineal and salivary glands. Neuropharmacology 10: 315–323.PubMedGoogle Scholar
  201. Mugiya, Y., Watabe, N., Yamada, J., Dean, J. M., Dunkelberger, D. G., and Shimizu, M. 1981. Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comp. Biochem. Physiol. A68: 659–662.Google Scholar
  202. Nakashima, H., Perlman, J., and Feldman, J. F. 1981. Genetic evidence that protein synthesis is required for the circadian clock in Neurospora. Science 212: 361–362.PubMedGoogle Scholar
  203. Nalbandov, A. V. 1945. A study of the effects of prolactin on broodiness and cock testes. Endocrinology 36: 251–258.Google Scholar
  204. Norwood, T. H. 1978. Somatic cell genetics in the analysis of in vitro senescence. In: Schneider, E. L., ed., The Genetics of Aging, New York, Plenum Press, pp. 337–382.Google Scholar
  205. Oksche, A. 1971. Sensory and glandular elements of the pineal organ. In: Wolstenholme, G. E. W., and Knight, J., eds., The Pineal Gland, Edinburgh, Churchill Livingstone, pp. 127–146.Google Scholar
  206. O’Meara, A., and Herrmann, R. L. 1972. A modified mouse liver chromatin preparation displaying age-related differences in salt dissociation and template ability. Biochim. Biophys. Acta 269: 419–427.PubMedGoogle Scholar
  207. Orgel, L. E. 1963. The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc. Natl. Acad. Sci. USA 49: 517–521.PubMedGoogle Scholar
  208. Pacifici, M., Fellini, S. A., Holtzer, H., and DeLuca, S. 1981. Changes in the sulfated proteoglycans synthesized by “aging” chondrocytes. I. Dispersed cultured chondrocytes and in vivo cartilages. J. Biol. Chem. 256: 1029–1037.PubMedGoogle Scholar
  209. Pavlidis, T., and Kauzman, W. 1969. Towards a quantitative biochemical model for circadian oscillators. Arch. Biochem. Biophys. 132: 338–348.PubMedGoogle Scholar
  210. Pellegrino de Iraldi, A. 1969. Granulated vesicles in the pineal gland of the mouse, Z. Zellforsch. Mikrosk. Anat. 101: 408–418.Google Scholar
  211. Pflugfelder, O. 1956. Physiologie derEpiphyse. Verh. Dtsch. Zool. Ges. 50: 53–75.Google Scholar
  212. Philippens, K. M. H. 1974. Circadian variations in rat liver mitochondrial activity. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 23–28.Google Scholar
  213. Pieper, D. R., and Gala, R. R. 1979a. The effect of light on the prolactin surges of pseudopregnant and ovariectomized, estrogenized rats. Biol. Reprod. 20: 727–732.PubMedGoogle Scholar
  214. Pieper, D. R., and Gala, R. R. 1979b. Lack of an effect of the pineal gland, olfactory bulbectomy and short photoperiod on the afternoon prolactin surge of the ovariectomized, estrogen treated rat. Biol. Reprod. 21: 1067–1072.PubMedGoogle Scholar
  215. Pierard, D., Jacqmard, A., Bernier, G., and Salmon, J. 1980. Appearance and disappearance of proteins in the shoot meristem of Sinapisalba in transition to flowering. Planta 150: 397–405.Google Scholar
  216. Pittendrigh, C. S. 1974. Circadian oscillations in cells and the circadian organization of multicellular systems. In: The Neurosciences—Third Study Program, Cambridge, Mass., MIT Press, pp. 437–458.Google Scholar
  217. Pittendrigh, C. S., Bruce, V. G., Rosensweig, N. S., and Rubin, M. L. 1959. Growth patterns in Neurospora. Nature (London) 184: 169–170.Google Scholar
  218. Potter, V. R., Baril, E. F., Watanabe, M., and Whittle, E. D. 1968. Systematic oscillations in metabolic functions in liver from rats adapted to controlled feeding schedules. Fed. Proc. 27: 1238 - 1245.PubMedGoogle Scholar
  219. Price, G. B., and Makinodan, T. 1972a. Immunologic deficiencies in senescence. I. Characterization of intrinsic deficiencies. J. Immunol. 108: 403–412.PubMedGoogle Scholar
  220. Price, G. B., and Makinodan, T. 1972b. Immunologic deficiencies in senescence. II. Characteri¬zation of extrinsic deficiencies. J. Immunol. 108: 413–417.PubMedGoogle Scholar
  221. Price, G. B., Modak, S. P., and Makinodan, T. 1971. Age-associated changes in the DNA of mouse tissue. Science 171: 917–920.PubMedGoogle Scholar
  222. Pritchett, J. F., Sartin, J. L., Marple, D. N., Harper, W. L., and Till, M. L. 1979. Interaction of aging with in vitro adrenocortical responsiveness to ACTH and cyclic AMP. Horm. Res. 10: 96–103.PubMedGoogle Scholar
  223. Quay, W. B. 1956. Volumetric and cytologic variation in the pineal body of Peromyscus leucopus (Rodentia) with respect to sex, captivity and day-length. J. Morphol. 98: 471–495.Google Scholar
  224. Quay, W. B. 1968. Individuation and lack of pineal effect in the rat’s circadian locomotor rhythm. Physiol. Behav. 3: 109–118.Google Scholar
  225. Quay, W. B. 1970a. Physiological significance of the pineal during adaptation to shifts in photoperiod. Physiol. Behav. 5: 353–360.PubMedGoogle Scholar
  226. Quay, W. B. 1970b. Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiol. Behav. 5: 1281–1290.PubMedGoogle Scholar
  227. Quay, W. B. 1974. Circadian rhythm and phase-shifting in running activity by feral white-footed mice CPeromyscus): Effects of distal pinealectomy. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology,Tokyo, Igaku Shoin, pp. 152–154.Google Scholar
  228. Queiroz, O. 1974. Circadian rhythms and metabolic patterns. Annu. Rev. Plant Physiol. 25: 115–134.Google Scholar
  229. Ralph, C. L., Hedlund, L., and Murphy, W. A. 1967. Diurnal cycles of melatonin in bird pineal bodies. Comp. Biochem. Physiol. 22: 591–599.Google Scholar
  230. Raynal, A. 1979. Evidence for a common cytoplasmic determinant of longevity and senescence in the ascomycete Podospora anserina. Mol. Gen. Genet. 175: 281–292.Google Scholar
  231. Reinberg, A. 1974. Aspects of circannual rhythms in man. In: Pengelley, E. T., ed., Circannual Clocks: Annual Biological Rhythms, New York, Academic Press, pp. 423–505.Google Scholar
  232. Reiss, U., and Gershon, D. 1976. Rat-liver superoxide dismutase: Purification and age-related modifications. Eur. J. Biochem. 63: 617–623.PubMedGoogle Scholar
  233. Reiss, U., and Rothstein, M. 1974. Isocitrate lyase from the free-living nematode, Turbatrix aceti: Purification and properties. Biochemistry 13: 1796–1800.PubMedGoogle Scholar
  234. Reiss, U., and Rothstein, M. 1975. Age-related changes in isocitrate lyase from the free living nematode, Turbatrix aceti. J. Biol. Chem. 250: 826–830.PubMedGoogle Scholar
  235. Reiter, R. J. 1971. Influence of the pineal gland and the photoperiod on seasonal reproductive rhythms in golden hamsters. Anat. Rec. 169: 410.Google Scholar
  236. Reiter, R. J. 1974. Evidence for a seasonal rhythm in pineal gland function. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 155–159.Google Scholar
  237. Reitherman, R., Flanagan, S. D., and Barondes, S. H. 1973. Electromotive phenomena in partition of erythrocytes in aqueous polymer two phase systems. Biochim. Biophys. Acta 297: 193–202.PubMedGoogle Scholar
  238. Relkin, R., Adachi, M., and Kahan, S. A. 1972. Effect of pinealectomy and constant light and darkness on prolactin levels in the pituitary and plasma and on pituitary ultrastructure of the rat. J. Endocrinol. 54: 263–268.PubMedGoogle Scholar
  239. Reznick, A. Z., and Gershon, D. 1977. Age related alterations in purified fructose-1,6-diphosphate aldolase from the nematode Turbatrix aceti. Mech. Ageing Dev. 6: 345–353.PubMedGoogle Scholar
  240. Richter, C. P. 1964. Biological clocks and endocrine glands. Excerpta Med. 83: 119–123.Google Scholar
  241. Richter, C. P. 1965. Biological Clocks in Medicine and Psychiatry, Springfield, 111., Thomas.Google Scholar
  242. Rizet, G. 1953. Sur l’impossibilité d’obtenir la multiplication végétative ininterrompue et illimitée de l’ascomycete Podospora anserina. C. R. Acad. Sci. Ser. D 237: 838–840.Google Scholar
  243. Roberts-Thomson, I. C., Whittingham, S., Young-Chaiyud, U., and Mackay, I. R. 1974. Ageing, immune response, and mortality. Lancet 1974 (2): 368–370.Google Scholar
  244. Rollag, M. D. Panke, E. S., and Reiter, R. J. 1980. Pineal melatonin content of male hamsters throughout the seasonal reproductive cycle. Proc. Soc. Exp. Biol. Med. 165: 330–334.PubMedGoogle Scholar
  245. Romero, J. A. 1978. Biologic rhythms and sympathetic neural control of pineal metabolism. In: Samis, H. V., and Capobianco, S., eds., Aging and Biological Rhythms, New York, Plenum Press, pp. 235–249.Google Scholar
  246. Romero, J. A., Zatz, M., Kebabian, J. W., and Axelrod, J. A. 1975. Binding of 3H-alprenolol to beta-adrenergic receptor sites in rat pineal: Circadian cycles. Nature (London) 258: 435–436.Google Scholar
  247. Ronnekleiv, O. K., Krulich, L., and McConn, S. M. 1973. An early morning surge of prolactin in the male rat and its abolition by pinealectomy. Endocrinology 92: 1339–1342.PubMedGoogle Scholar
  248. Rothfels, K. H., Kupelwieser, E. B., and Parker, R. C. 1963. Effects of X-irradiated feeder layers on mitotic activity and development of aneuploidy in mouse-embryo cells in vitro. Can. Cancer Conf. 5: 191–223.PubMedGoogle Scholar
  249. Rowan, W. 1925. Relation of light to bird migration and developmental changes. Nature (London) 115: 494–495.Google Scholar
  250. Rowan, W. 1932. Experiments in bird migration. III. The effects of artificial light, castration and certain extracts on the autumn movements of the American crow (Corvus brachyrhynchos). Proc. Natl. Acad. Sci. USA 18: 659–664.Google Scholar
  251. Rowley, M. J., Buchanan, H., and Mackay, I. R. 1968. Reciprocal change with age in antibody to extrinsic and intrinsic antigens. Lancet 1968 (2): 24–26.Google Scholar
  252. Ruby, J. R., Scheving, L. E., Gray, S. B., and White, K. 1973. Circadian rhythm of nuclear DNA in adult rat liver. Exp. Cell Res. 76: 136–142.PubMedGoogle Scholar
  253. Ruby, J. R., Scheving, L. E., Gray, S. B., and White, K. 1974. Demonstration of a circadian rhythm of nuclear DNA in liver. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology,Tokyo, Igaku Shoin, pp. 33–37.Google Scholar
  254. Rudeen, P. K., and Reiter, R. J. 1979a. Pineal N-acetyltransferase activity in hamsters maintained in shortened light cycles. J. Endocrinol. Invest. 2: 19–23.PubMedGoogle Scholar
  255. Rudeen, P. K., and Reiter, R. J. 1979b. Photoperiodic control of rat pineal serotonin TV-acetyl- transferase activity. Int. J. Chronobiol. 6: 211–218.PubMedGoogle Scholar
  256. Rudeen, P. K., and Reiter, R. J. 1980. Influence of a skeleton photoperiod on reproductive organ atrophy in the male golden hamster. J. Reprod. Fertil. 60: 279–283.PubMedGoogle Scholar
  257. Rutledge, J. T. 1974. Circannual rhythm of reproduction in male European starlings (,Sturnus vulgaris). In: Pengelley, E. T., éd., Circannual Clocks: Annual Biological Rhythms, New York, Academic Press, pp. 297–345.Google Scholar
  258. Sacher, G. A. 1978. Longevity and aging in vertebrate evolution. Bioscience 28: 497–501.Google Scholar
  259. Sachsenmaier, W. 1976. Control of synchronous nuclear mitosis in Physarum polycephalum. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 409–420.Google Scholar
  260. Salisbury, F. B., and Denney, A. 1971. Separate clocks for leaf movements and photoperiodic flowering in Xanthium strumarium L. (cocklebur). In: Menaker, M., ed., Biochronometry, Washington, D.C., National Academy of Sciences, pp. 292–311.Google Scholar
  261. Salisbury, F. B., and Denney, A. 1974. Noncorrelation of leaf movements and photoperiodic clocks in Xanthium strumarium L. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 679–686.Google Scholar
  262. Samarasinghe, D., and Delahunt, B. 1980. The ependyma of the saccular pineal gland in the non- eutherian mammal Trichosurus vulpecula. Cell Tissue Res. 213: 417–432.PubMedGoogle Scholar
  263. Samis, H. V., Wulff, V. J., and Falzone, J. A. 1964. The incorporation of [3H]-cytidine into RNA of liver nuclei of young and old rats. Biochim. Biophys. Acta 91: 223–232.PubMedGoogle Scholar
  264. Sargent, M. L., and Woodward, D. O. 1969. Genetic determinants of circadian rhythmicity in Neurospora. J. Bacteriol. 97: 861–866.PubMedGoogle Scholar
  265. Sargent, M. L., Briggs, W. R., and Woodward, D. O. 1966. The circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 41: 1343–1349.PubMedGoogle Scholar
  266. Satter, R. L., Marinoff, P., and Galston, A. 1970. Phytochrome controlled nyctinasty in Albizzia julibrissin. II. Potassium flux as a basis for leaflet movement. Am. J. Bot. 57: 916–926.Google Scholar
  267. Sawai, T. 1979. Cyclic changes in the cortical layer of non-nucleated fragments of the newt’s egg. J. Embryol. Exp. Morphol. 51: 183–193.PubMedGoogle Scholar
  268. Scheving, L. E., and Pauly, J. E. 1973. Cellular mechanisms involving biorhythms with emphasis on those rhythms associated with the S and M stages of the cell cycle. Int. J. Chronobiol. 1: 269–286.PubMedGoogle Scholar
  269. Schneider, E. L., ed. 1978. The Aging Reproductive System, New York, Raven Press, pp. 193–212.Google Scholar
  270. Schoenmakers, H. J. N. 1977. Steroid synthesis of Asterias rubens. Proc. Int. Union Physiol. Sci. 13: 673.Google Scholar
  271. Schoenmakers, H. J. N. 1979a. In vitro biosynthesis of steroids from cholesterol by the ovaries and pyloric caeca of the starfish Asterias rubens. Comp. Biochem. Physiol. 63B: 179–184.Google Scholar
  272. Schoenmakers, H. J. N. 1979b. Steroids and Reproduction of the Female Asterias rubens, Utrecht, The Netherlands, University of Utrecht, Thesis.Google Scholar
  273. Schoenmakers, H. J. N. 1980a. The possible role of steroids in vitellogenesis in the starfish Asterias rubens. In: Clark, W. H., and Adams, T. S., eds., Advances in Invertebrate Reproduction, Amsterdam, Elsevier/North-Holland, pp. 127–150.Google Scholar
  274. Schoenmakers, H. J. N. 1980b. The variation of 3/3-hydroxysteroid dehydrogenase activity of the ovaries and pyloric caeca of the starfish Asterias rubens during the annual reproductive cycle. J. Comp. Physiol. 138: 27–30.Google Scholar
  275. Schoenmakers, H. J. N., and Dieleman, S. J. 1981. Progesterone and estrone levels in the ovaries, pyloric ceca, and perivisceral fluid during the annual reproductive cycle of starfish, Asterias rubens. Gen. Comp. Endocrinol. 43: 63–70.PubMedGoogle Scholar
  276. Schoenmakers, H. J. N., and Voogt, P. A. 1980. In vitro biosynthesis of steroids from progesterone by the ovaries and pyloric caeca of the starfish, Asterias rubens. Gen. Comp. Endocrinol. 41: 408–416.Google Scholar
  277. Schulte, B. A., Seal, U. S., Plotka, E. D., Letellier, M. A., Verme, L. J., Ozoga, J. J., and Parsons, J. A. 1981. The effect of pinealectomy on seasonal changes in prolactin secretion in the white-tailed deer (Odocoileus virginianus borealis). Endocrinology 108: 173–178.PubMedGoogle Scholar
  278. Schweiger, H. G. 1977. Circadian rhythms in unicellular organisms: An endeavor to explain the molecular mechanism. Int. Rev. Cytol. 51: 315–342.PubMedGoogle Scholar
  279. Segre, D., and Segre, M. 1976. Humeral immunity in aged mice. II. Increased suppressor T cell activity in immunologically deficient old mice. J. Immunol. 116: 735–738.PubMedGoogle Scholar
  280. Seifert, J. 1980. Circadian variations in pyrimidine nucleotide synthesis in rat liver. Arch. Biochem. Biophys. 201: 194–198.PubMedGoogle Scholar
  281. Shapiro, B. H., and Leathern, J. H. 1971. Aging and adrenal A5-3/3-hydroxysteroid dehydrogenase in female rats. Proc. Soc. Exp. Biol. Med. 136: 19–20.PubMedGoogle Scholar
  282. Sharma, H. K., and Rothstein, M. 1978. Age-related changes in properties of enolase from Tur- batrix aceti. Biochemistry 17: 2869–2876.PubMedGoogle Scholar
  283. Sharma, H. K., Gupta, S. K., and Rothstein, M. 1976. Age-related alteration of enolase in the free-living nematode Turbatrix aceti. Arch. Biochem. Biophys. 174: 324–332.PubMedGoogle Scholar
  284. Sharma, H. K., Prasanna, H. R., and Rothstein, M. 1980. Altered phosphoglycerate kinase in aging rats. J. Biol. Chem. 255: 5043–5050.PubMedGoogle Scholar
  285. Shaw, C. R., and Barto, E. 1963. Genetic evidence for the subunit structure of lactate dehydro¬genase isozymes. Proc. Natl. Acad. Sci. USA 50: 211–214.PubMedGoogle Scholar
  286. Shimo, A. 1980. Aging of hepatocytes. In: Oota, K., Makinodan, T., Iriki, M., and Baker, L. S., eds., Aging Phenomena: Relationships among Different Levels of Organization, New York, Plenum Press, pp. 59–70.Google Scholar
  287. Simpkins, J. W., Kalra, P. S., and Kalra, S. P. 1981. Alterations in daily rhythms of testosterone and progesterone in old male rats. Exp. Aging Res. 7: 25–32.PubMedGoogle Scholar
  288. Singh, S. N., and Kanungo, M. S. 1968. Alterations in lactate dehydrogenase of the brain, heart, skeletal muscle, and liver of rats of various ages. J. Biol. Chem. 243: 4526–4529.PubMedGoogle Scholar
  289. Singhal, R. P., Kopper, R. A., Nishimura, S., and Shindo-Okada, N. 1981. Modification of guanine to queuine in transfer RNAs during development and aging. Biochem. Biophys. Res. Commun. 99: 120–126.PubMedGoogle Scholar
  290. Smith, S. G., and Stetson, M. H. 1980. Maturation of the clock-timed gonadotropin release mechanism in hamsters: A key event in the pubertal process? Endocrinology 107: 1334–1337.PubMedGoogle Scholar
  291. Southam, C. M. 1974. Areas of relationship between immunology and clinical oncology. Am. J. Clin. Pathol. 62: 224–242.PubMedGoogle Scholar
  292. Steger, R. W., Huang, H. H., Hodson, C. A., Leung, F. D., Meites, J., and Sacher, G. A. 1980. Effects of advancing age on hypothalamic-hypophysial-testicular functions in the male white-footed mouse (.Peromyscus leucopus). Biol. Reprod. 22: 805–809.PubMedGoogle Scholar
  293. Steinhagen-Thiessen, E., and Hilz, H. 1976. The age-dependent decrease in creatine kinase and aldolase activities in human striated muscle is not caused by an accumulation of faulty proteins. Mech. Ageing Dev. 5: 447–457.PubMedGoogle Scholar
  294. Steinhagen-Thiessen, E., and Hilz, H. 1979. Aldolase activity and cross-reacting material in lymphocytes of aged individuals. Gerontology 25: 132–135.PubMedGoogle Scholar
  295. Stetson, M. H. 1971. Neuroendocrine control of photoperiodically induced fat deposition in white- crowned sparrows. J. Exp. Zool. 176: 409–414.PubMedGoogle Scholar
  296. Stetson, M. H. 1978. Circadian organization and female reproductive cyclicity. In: Samis, H. V., and Capobianco, S., eds., Aging and Biological Rhythms, New York, Plenum Press, pp. 251–274.Google Scholar
  297. Stetson, M. H., and Erickson, J. E. 1972. Hormonal control of photoperiodically induced fat deposition in white-crowned sparrows. Gen. Comp. Endocrinol. 19: 355–362.PubMedGoogle Scholar
  298. Stetson, M. H., and McMillan, J. P. 1974. Some neuroendocrine and endocrine correlates in the timing of bird migration. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 630–635.Google Scholar
  299. Stevens, L. C. 1967. The biology of teratomas. Adv. Morphog. 6: 1–31.PubMedGoogle Scholar
  300. Stockdale, F. E. 1971. DNA synthesis in differentiating skeletal muscle cells: Initiation by ultraviolet light. Science 171: 1145–1147.PubMedGoogle Scholar
  301. Stowe, S. J. 1980. Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res. 211: 419–440.PubMedGoogle Scholar
  302. Straley, S. C., and Bruce, V. G. 1979. Stickiness to glass: Circadian changes in the cell surface of Chlamydomonas reinhardi. Plant Physiol. 63: 1175–1181.PubMedGoogle Scholar
  303. Strumwasser, F. 1965. The demonstration and manipulation of a circadian rhythm in a single neuron. In: Aschoff, J., ed., Circadian Clocks, Amsterdam, North-Holland, pp. 442–462.Google Scholar
  304. Subramanian, M. G., and Gala, R. R. 1976. The influence of cholinergic, adrenergic, and sero¬tonergic drugs on the afternoon surge of plasma prolactin in ovariectomized, estrogen-treated rats. Endocrinology 98: 842–848.PubMedGoogle Scholar
  305. Sulzman, F. M., and Edmunds, L. M. 1972. Persisting circadian oscillations in enzyme activity in non-dividing cultures of Euglena. Biochem. Biophys. Res. Commun. 47: 1338–1344.PubMedGoogle Scholar
  306. Sweeney, B. M. 1963. Resetting the biological clock in Gonyaulax with ultraviolet light. Plant Physiol. 38: 704–708.PubMedGoogle Scholar
  307. Sweeney, B. M., and Hastings, J. W. 1958. Rhythmic cell division in populations of Gonyaulax polyedra. J. Protozool. 5: 217–224.Google Scholar
  308. Takimoto, A., and Hamner, K. C. 1964. Effect of temperature and preconditioning on photoperiodic responses of Pharbitis nil. Plant Physiol. 39: 1024–1030.PubMedGoogle Scholar
  309. Talal, N., and Steinberg, A. D. 1974. Curr. Top. Microbiol. Immunol. 61: 79–103.Google Scholar
  310. Tamarkin, L., Reppert, S. M., Klein, D. C., Pratt, B., and Goldman, B. D. 1980. Studies on the daily pattern of pineal melatonin in the Syrian hamster. Endocrinology 107: 1525–1529.PubMedGoogle Scholar
  311. Teller, M. N. 1972. Age changes and immune resistance to cancer. Adv. Gerontol. Res. 4: 25–43.Google Scholar
  312. Theron, J. J., Biagio, R., Meyer, A. C., and Boekkooi, S. 1979. Microfilaments, the smooth endoplasmic reticulum, and synaptic ribbon fields in the pinealocytes of the baboon (Papio ursinus). Am. J. Anat. 154: 151–161.PubMedGoogle Scholar
  313. Trobec, T. N. 1974. Daily rhythms in the hormonal control of fat storage in lizards. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 147–151.Google Scholar
  314. Truman, J., and Riddiford, L. 1970. Neuroendocrine control of ecdysis in silkmoths. Science 167: 1624–1626.PubMedGoogle Scholar
  315. Tudzynski, P., and Esser, K. 1979. Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Mol. Gen. Genet. 173: 71–84.PubMedGoogle Scholar
  316. Utsumi, K., and Natori, S. 1980. Changes in head proteins of Sarcophaga peregrina with age. FEBS Lett. 111: 419–422.PubMedGoogle Scholar
  317. Vanden Driessche, T. 1975. Circadian rhythms and molecular biology. BioSystems 6: 188–201.PubMedGoogle Scholar
  318. Vollrath, L., and Huss, H. 1973. Synaptic ribbons of the guinea-pig pineal gland under normal and experimental conditions. Z. Zellforsch. Mikrosk. Anat. 139: 417–429.PubMedGoogle Scholar
  319. Volm, M. 1964. Die Tagesperiodik der Zellteilung von Paramecium bursaria. Z. Vgl. Physiol. 481: 157–180.Google Scholar
  320. von Hahn, H. P., and Fritz, E. C. 1966. Age-related alterations in the structure of DNA. Gerontologia 12: 237–250.Google Scholar
  321. Wagner, E. 1976. Endogenous rhythmicity in energy metabolism: Basis for timerphotoreceptor interactions in photoperiodic control. In: Hastings, J. W., and Schweiger, H. G., eds., The Molecular Basis of Circadian Rhythms, Berlin, Dahlem Konferenzen, pp. 215–238.Google Scholar
  322. Wagner, E., and Frosch, S. 1974. Endogenous rhythmicity and energy transduction. VI. Rhyth¬micity in reduced and oxidized pyridine nucleotide levels in seedlings of Chenopodium rubrum. J. Interdiscip. Cycle Res. 5: 231–239.Google Scholar
  323. Wagner, E., Stroebele, L., and Frosch, S. 1974. Endogenous rhythmicity and energy transduction. V. Rhythmicity in adenine nucleotides and energy charge in seedlings of Chenopodium ru- brum L. J. Interdiscip. Cycle Res. 3: 77–88.Google Scholar
  324. Walker, P. R., and van Potter, R. 1974. Diurnal rhythms of hepatic enzymes from rats adapted to controlled feeding schedules. In: Scheving, L. E., Halberg, F., and Pauly, J. E., eds., Chronobiology, Tokyo, Igaku Shoin, pp. 17–22.Google Scholar
  325. Walter, H., and Selby, F. W. 1966. Counter-current distribution of red blood cells of slightly different ages. Biochim. Biophys. Acta 112: 146–153.PubMedGoogle Scholar
  326. Walter, H., Krob, E. J., Tamblyn, C. H., and Seaman, G. V. F. 1980. Surface alterations of erythrocytes with cell age: Rat red cell is not a model for human red cell. Biochem. Biophys. Res. Commun. 97: 107–113.PubMedGoogle Scholar
  327. Walther, W. G., and Edmunds, L. N. 1970. Periodic increase in DNase activity during the cell cycle in synchronized Euglena. J. Cell Biol. 46: 613–617.PubMedGoogle Scholar
  328. Watanabe, M., Potter, V. R., and Pitot, H. C. 1968. Systematic oscillations in tyrosine transam¬inase and other metabolic functions also in liver of normal and adrenalectomized rats on controlled feeding schedules. J. Nutr. 95: 207–227.PubMedGoogle Scholar
  329. Weber, A., Szajnert, M. F., and Beck, G. 1980. Age-related changes of liver tyrosine aminotrans¬ferase in senescent rats. Biochim. Biophys. Acta 631: 412–419.PubMedGoogle Scholar
  330. Weeks, D. P., and Collis, P. S. 1979. Induction and synthesis of tubulin during the cell cycle and life cycle of Chlamydomonas reinhardi. Dev. Biol. 69: 400–407.PubMedGoogle Scholar
  331. Weigle, W. O. 1980. Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis. Adv. Imunol. 30: 159–273.Google Scholar
  332. Weise, C. M. 1967. Castration and spring migration in the white-throated sparrow. Condor 69: 49–68.Google Scholar
  333. Weiss, B. 1971. Ontogenetic development of adenyl cyclase and phosphodiesterase in rat brain. J. Neurochem. 18: 469–477.PubMedGoogle Scholar
  334. Wever, R. A. 1979. The Circadian System of Man: Results of Experiments under Temporal Isolation, Berlin, Springer-Verlag.Google Scholar
  335. Wieland, T., and Pfleiderer, H. 1957. Nachweis der Hetergenitat von Milchsauredehydrogenasen verschiedenen Ursprungs durch Tragerelektrophorese. Biochem. Z. 329: 112–116.PubMedGoogle Scholar
  336. Wille, J. J., and Ehret, C. F. 1968. Light synchronization of an endogenous circadian rhythm of cell division in Tetrahymena. J. Protozool. 15: 785–789.PubMedGoogle Scholar
  337. Woolum, J. C., and Strumwasser, F. 1980. The differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia. Proc. Natl. Acad. Sci. USA 77: 5542–5546.PubMedGoogle Scholar
  338. Wright, W. E., and Hayflick, L. 1975. Contributions of cytoplasmic factors to in vitro cellular senescence. Fed. Proc. 34: 76–79.PubMedGoogle Scholar
  339. Yamamoto, K. T., and Smith, W. O. 1981. Alkyl and co-amino alkyl agaroses as probes of light- induced changes in phytochrome from pea seedlings (Pisum sativum cv Alaska). Biochim. Biophys. Acta 668: 27–34.PubMedGoogle Scholar
  340. Zimmermann, J. L. 1966. Effects of extended tropical photoperiod and temperature on the dickcissel. Condor 68: 377–387.Google Scholar
  341. Zs-Nagy, I. 1979. The role of membrane structure and function in cellular aging: A review. Mech. Ageing Dev. 9: 237–246.PubMedGoogle Scholar
  342. Zweig, M., Snyder, S. H., and Axelrod, J. 1966. Evidence for a nonretinal pathway of light to the pineal gland of newborn rats. Proc. Natl. Acad. Sci. USA 56: 515–520.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations